以下叙述只是简单的叙述,CNN+RNN(LSTM,GRU)的应用相关文章还很多,而且研究的方向不仅仅是下文提到的1. CNN 特征提取,用于RNN语句生成图片标注。2. RNN特征提取用于CNN内容分类视频分类。3. CNN特征提取用于对话问答图片问答。还有很多领域,比如根据面目表情判断情感,用于遥感地图的标注,用于生物医学的图像解析,用于安全领域的防火实时监控等。而且现阶段关于CNN+RNN的研究应用相关文章更加多样,效果越来越好,我们可以通过谷歌学术参阅这些文章,而且大部分可免费下载阅读,至于付费的那就另说咯。

CNN与RNN对比

CNN卷积神经网络与RNN递归神经网络直观图

相同点:

  传统神经网络的扩展。

  前向计算产生结果,反向计算模型更新。

  每层神经网络横向可以多个神经元共存,纵向可以有多层神经网络连接。

不同点:

  CNN空间扩展,神经元与特征卷积;RNN时间扩展,神经元与多个时间输出计算

  RNN可以用于描述时间上连续状态的输出,有记忆功能,CNN用于静态输出

  CNN高级100+深度,RNN深度有限

CNN+RNN组合方式

1. CNN 特征提取,用于RNN语句生成图片标注。

2. RNN特征提取用于CNN内容分类视频分类。

3. CNN特征提取用于对话问答图片问答。

具体应用

1.图片标注

基本思路:

目标是产生标注的语句,是一个语句生成的任务,LSTM?描述的对象大量图像信息,图像信息表达,CNN?CNN网络中全连接层特征描述图片,特征与LSTM输入结合。

具体步骤:

模型设计-特征提取全连接层特征用来描述原图片LSTM输入:word+图片特征;输出下一word。

模型设计-数据准备

图片CNN特征提取2. 图片标注生成Word2Vect 向量3. 生成训练数据:图片特征+第n单词向量:第n+1单词向量。

模型训练:

运用迁移学习,CNN特征,语句特征应用已有模型2. 最终的输出模型是LSTM,训练过程的参数设定:梯度上限(gradient clipping), 学习率调整(adaptivelearning)3. 训练时间很长。

模型运行:

CNN特征提取2. CNN 特征+语句开头,单词逐个预测

2.视频行为识别

视频中在发生什么?

常用方法总结:

RNN用于CNN特征融合1. CNN 特征提取2. LSTM判断3. 多次识别结果分析。

不同的特征不同输出。

或者:所有特征作为一个输出。

RNN用于CNN特征筛选+融合:

1.并不是所有的视频 图像包含确定分类信息

2. RNN用于确定哪些frame 是有用的3. 对有用的图像特征 融合。

RNN用于,目标检测:

1.CNN直接产生目标候选区

2. LSTM对产生候选区融合(相邻时刻位置近 似)

3. 确定最终的精确位置。

多种模型综合:

竞赛/应用中,为了产生最好结果,多采用 多模型ensemble形式。

3.图片/视频问答

问题种类:

图片问答意义:

1. 是对纯文本语言问答系统的扩展

2. 图片理解和语言处理的深度融合

3. 提高人工智能应用范围-观察,思考,表达

方法流程:

1.依旧按照语言问答流程解决

2.图片特征同语言特征融合

3.训练数据:问题+图片----答案

模型设计-纯文字问答系统:

1.背景故事特征生成(word embedding)

2.问题特征生成

3.背景,问题特征融合

4.标准答案回归

模型设计-图片问答系统:

1.背景故事特征生成CNN

2.问题特征生成

3.背景,问题特征融合

4.标准答案回归----用以训练的数据:真值是什么?

模型优化-1

对图片特征向量进一步处理,建立CNN特征的 fisher特征

提高特征表达效率,更容易同encoding 特征组合

模型优化-2

用问题作为“候选区域”对原始CNN 特征图局部识别

模型优化-3

注意力图对图片问答帮助,根据问题产生第一次注意力图,然后最终注意力图,最后进行回答

什么在筐子里?

1筐子范围, 2 筐子里范围, 3 识别

模型优化小结

1.不同的优化结构方便不同类型的问题回答,数字/种类/抽象/二值判断

2.仍然是很新的研究问题,上述例子来源于 CVPR2016,学术价值应用价值都很大

3.人机交互中图片问答在 盲人辅助/教育/智能助手等方面大有可为

深度学习-CNN+RNN笔记的更多相关文章

  1. 深度学习Keras框架笔记之TimeDistributedDense类

    深度学习Keras框架笔记之TimeDistributedDense类使用方法笔记 例: keras.layers.core.TimeDistributedDense(output_dim,init= ...

  2. 深度学习之 rnn 台词生成

    深度学习之 rnn 台词生成 写一个台词生成的程序,用 pytorch 写的. import os def load_data(path): with open(path, 'r', encoding ...

  3. 深度学习Keras框架笔记之AutoEncoder类

    深度学习Keras框架笔记之AutoEncoder类使用笔记 keras.layers.core.AutoEncoder(encoder, decoder,output_reconstruction= ...

  4. 深度学习Keras框架笔记之Dense类(标准的一维全连接层)

    深度学习Keras框架笔记之Dense类(标准的一维全连接层) 例: keras.layers.core.Dense(output_dim,init='glorot_uniform', activat ...

  5. [深度学习]理解RNN, GRU, LSTM 网络

    Recurrent Neural Networks(RNN) 人类并不是每时每刻都从一片空白的大脑开始他们的思考.在你阅读这篇文章时候,你都是基于自己已经拥有的对先前所见词的理解来推断当前词的真实含义 ...

  6. 深度学习 CNN CUDA 版本2

    作者:zhxfl 邮箱:zhxfl##mail.ustc.edu.cn 主页:http://www.cnblogs.com/zhxfl/p/4155236.html 第1个版本blog在这里:http ...

  7. 深度学习-TensorFlow2.0笔记(一)

    一.Tensor 1.1 什么是Tensor?Tensor的数据类型 Tensor是张量的意思,在TensorFlow中张量可以是标量(scalar).向量(vector).矩阵(matrix).高维 ...

  8. 《动手学深度学习》系列笔记—— 1.2 Softmax回归与分类模型

    目录 softmax的基本概念 交叉熵损失函数 模型训练和预测 获取Fashion-MNIST训练集和读取数据 get dataset softmax从零开始的实现 获取训练集数据和测试集数据 模型参 ...

  9. deeplearning.ai 神经网络和深度学习 week1 深度学习概论 听课笔记

    1. 预测房价.广告点击率:典型的神经网络,standard NN. 图像:卷积神经网络,CNN. 一维序列数据,如音频,翻译:循环神经网络,RNN. 无人驾驶,涉及到图像.雷达等更多的数据类型:混合 ...

随机推荐

  1. kuma 学习一 minikube 安装

    官方文档提供了比较全的环境安装说明 我使用的系统是mac,同时使用minikube 运行 安装kumactl 下载地址: https://kong.bintray.com/kuma/kuma-0.1. ...

  2. sourceforge文件下载过慢

    sourceforge文件下载过慢,可以用下面网址镜像下载, http://sourceforge.mirrorservice.org 按搜索到的项目的英文字母依次查询,如http://sourcef ...

  3. 本地局域网yum源搭建-centos/redhat

    环境-centos6.7  [本机yum搭建提前备好,不做介绍] [root@nagios ~]# cat /etc/redhat-release CentOS release 6.7 (Final) ...

  4. 安全测试基础-SQL注入详解

    1:什么是SQL注入 SQL注入是一种将SQL代码插入或添加到应用(用户)的输入参数中的攻击,之后再将这些参数传递给后台的SQL服务器加以解析并执行. www.xx.com/news.php?id=1 ...

  5. nodejs异常处理过程/获取nodejs异常类型/写一个eggjs异常处理中间件

    前言 今天想写一下eggjs的自定义异常处理中间件,在写的时候遇到了问题,这个错误我捕获不到类型?? 处理过程,不喜欢看过程的朋友请直接看解决方法和总结 看一下是什么: 抛出的异常是检验失败异常Val ...

  6. [web] 前端一些细节

    作者:水落斜阳链接:https://www.jianshu.com/p/7a8124fdf945来源:简书著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 1, reflow和re ...

  7. Python3+mitmproxy安装使用教程(Windows)(转载)

    mitmproxy 是用于MITM的proxy,MITM中间人攻击.说白了就是服务器和客户机中间通讯多增加了一层.跟Fiddler和Charles最大的不同就是,mitmproxy可以进行二次开发,尤 ...

  8. IntelliJ IDEA-设置字体大小

    setting 设置字体font大小,点击apply-ok

  9. LZW

    LZW https://www2.cs.duke.edu/csed/curious/compression/lzw.html https://www.golangprograms.com/golang ...

  10. Could not create connection to database server. Attempted reconnect 3 times. Giving up.

    报出这个错误,可能原因: 1.检查MySQL数据库服务是否正常(包含检查服务名和密码),如果不正常,修复至正常为止: 2.maven工程中导入的mysql的jar版本和你的MySQL版本不相符,必须相 ...