人工智能 - AI
CNCC 2016 | 人工智能60年浪潮 (原文链接)
Intelligence,智能是指生物一般性的精神能力,其三因素理论:
- 成分智力 Componential Intelligence:思维和对问题解决所依赖的心理过程,与受教育程度直接相关;
- 经验智力 Experiential Intelligence:与受教育程度并不直接相关;
- 情境智力 Contextual Intelligence:情商;
Artificial Intelligence - AI,人工智能是指由人工制造出来的系统所表现出来的智能,是对人的意识、思维的信息过程的模拟,用于发展人的智能的三个方面。
Alan Turing - 图灵
- 计算机科学之父,人工智能之父
- 由0和1组成的有限状态自动机演算
- 图灵奖:计算机领域的诺贝尔奖
AI三大派别
- 逻辑主义(符号主义)
- 符号推理与机器推理
- Simon - CMU
- 连接主义
- 神经元网络与机器学习
- Minsky Marvin - MIT,连接主义提出者
- 行为主义
- 控制、自适应与进化计算
- 维纳 - MIT
起源:1956 - 达特茅斯会议;
发展:
第一次浪潮(1956-1976)
- 符号主义盛行,功能主义占主流,演算推理证明、专家系统、知识工程迅速发展;
- 在统计方法中引入符号方法进行语义处理 -> 人机交互;
- 斯坦福大学、卡耐基大学(CMU);
AI初期预言(1958) - Simon与Newell
- 十年内战胜国际象棋冠军
- 十年内发现和证明有意义的数学理论
- 十年内能谱写优美的乐趣
- 十年内能实现大多数的心理学理论
第二次浪潮(1976-2006)
- 连接主义盛行,Deep Learning尚未突破;
- AI神经元网络方法、自组织网络、感知机(Perceptron),BP算法、误差反传网络(Back Propagation Net);
第三次浪潮(2006 - 至今)
- 连接主义盛行,基于互联网大数据的Deep Learning取得突破;
未来:
关于AI的思考,人的知识可以分成四类:
- We know what we know:可推理可统计;
- We know what we don't know:可推理不可统计,举一反三;
- We don't know what we know:不可推理可统计,模糊识别;
- We don't know what we don't know:不可推理不可统计,顿悟;
横向(Learning)是可统计与不可统计,机器学习;纵向(Deep)是可推理证明与不可推理证明,神经网络;
目前,AI在逻辑、语言文字、图形图像方面做的比较好,空间、音乐与肢体运作方面则马马虎虎,内省、人际以及自然探索方面完全还不行。人工智能-1.0是在可统计可推理部分取得一定成果,人工智能-2.0是在1.0基础上向不可统计不可推理的部分区域推进,其中,利用小样本学习、基于贝叶斯程序学习等的概率学习方法将是下一代AI-2.0的重要方向。
参考:
人工智能 - AI的更多相关文章
- 数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)的区别是什么? 数据科学(data science)和商业分析(business analytics)之间有什么关系?
本来我以为不需要解释这个问题的,到底数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)有什么区别,但是前几天因为有个学弟问我,我想了想发现我竟然也回答 ...
- 【转】人工智能(AI)资料大全
这里收集的是关于人工智能(AI)的教程.书籍.视频演讲和论文. 欢迎提供更多的信息. 在线教程 麻省理工学院人工智能视频教程 – 麻省理工人工智能课程 人工智能入门 – 人工智能基础学习.Peter ...
- 人工智能--AI篇
AI背景 在当今互联网信息高速发展的大背景下,人工智能(AI)已经开始走进了千家万户,逐渐和我们的生活接轨,那具体什么是AI呢? 什么是人工智能(AI)? 人工智能:简单理解就是由人制造出来的,有一定 ...
- 解读 --- 基于微软企业商务应用平台 (Microsoft Dynamics 365) 之上的人工智能 (AI) 解决方案
9月25日微软今年一年一度的Ignite 2017在佛罗里达州奥兰多市还是如期开幕了.为啥这么说?因为9月初五级飓风厄玛(Hurricane Irma) 在佛罗里达州登陆,在当地造成了挺大的麻烦.在这 ...
- 人工智能AI芯片与Maker创意接轨(下)
继「人工智能AI芯片与Maker创意接轨」的(上)篇中,认识了人工智能.深度学习,以及深度学习技术的应用,以及(中)篇对市面上AI芯片的类型及解决方案现况做了完整剖析后,系列文到了最后一篇,将带领各位 ...
- 人工智能AI芯片与Maker创意接轨 (中)
在人工智能AI芯片与Maker创意接轨(上)这篇文章中,介绍人工智能与深度学习,以及深度学习技术的应用,了解内部真实的作业原理,让我们能够跟上这波AI新浪潮.系列文来到了中篇,将详细介绍目前市面上的各 ...
- 国家制定人工智能(AI)发展战略的决策根据
在今年两会上,李彦宏的提案有何道理?提案的依据是什么?这个问题必须说清楚,对社会公众有个交代. 回想过去,早在上世纪九十年代,用"电子网络"模拟人脑的想法已经出现.这样的" ...
- python实现人工智能Ai抠图功能
这篇文章主要介绍了python实现人工智能Ai抠图功能,本文通过实例代码给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下 自己是个PS小白,没办法只能通过技术来证明自己. 话不多说, ...
- 【AI测试】也许这有你想知道的人工智能 (AI) 测试--第二篇
概述此为人工智能 (AI) 测试第二篇 第一篇主要介绍了 人工智能测试.测试什么.测试数据等.第二篇主要介绍测试用例和测试报告.之后的文章可能具体介绍如何开展各项测试,以及具体项目举例如何测试.测试用 ...
- arcpy地理处理工具案例教程-生成范围-自动画框-深度学习样本提取-人工智能-AI
arcpy地理处理工具案例教程-生成范围-自动画框-深度学习样本提取-人工智能-AI 商务合作,科技咨询,版权转让:向日葵,135-4855_4328,xiexiaokui#qq.com 目的:对面. ...
随机推荐
- ASP.NET Core 1.0中的管道-中间件模式
ASP.NET Core 1.0借鉴了Katana项目的管道设计(Pipeline).日志记录.用户认证.MVC等模块都以中间件(Middleware)的方式注册在管道中.显而易见这样的设计非常松耦合 ...
- IDisposable的另类用法
IDisposable是.Net中一个很重要的接口,一般用来释放非托管资源,我们知道在使用了IDisposable的对象之后一定要调用IDisposable.Dispose()方法,或者使用.Net提 ...
- EF:打开Oracle连接时报错
基础提供程序在 Open 上失败. The underlying provider failed on Open. 解决:安装最新的ODTwithODAC121024.
- Chrome开发者工具不完全指南(五、移动篇)
前面介绍了Chrome开发者工具的大部分内容工具,现在介绍最后两块功能Audits和Console面板.一.Audits Audits面板会针对目前网页提出若干条优化的建议,这些建议分为两大类,一类是 ...
- 构建基于Chromium的应用程序
chromium是google chrome浏览器所采用的内核,最开始由苹果的webkit发展而出,由于webkit在发展上存在分歧,而google希望在开发上有更大的自由度,2013年google决 ...
- Hibernate增删查改语句
我用的数据库是MySQL,实体类叫Product create table Product ( proId integer not null auto_increment, proName varch ...
- DataGrid中的常用属性
DataGrid中的常用属性 $('#dg').datagrid({ url:'datagrid_data.json', columns:[[ {field:'code',title:'Code',w ...
- Qt with OpenCascade
Qt with OpenCascade 摘要Abstract:详细介绍了如何在Qt中使用OpenCascade. 关键字Key Words:Qt.OpenCascade 一.引言 Introducti ...
- windows server 注意windows的temp目录
windows解压缩包.安装软件时,会生成一些临时文件存放在temp目录中,windows不会自动删除这些文件. 临时文件目录可以在环境变量中查看和配置 在工作机or个人PC机中中这个目录一般不会有什 ...
- iOS开发之使用Storyboard预览UI在不同屏幕上的运行效果
在公司做项目一直使用Storyboard,虽然有时会遇到团队合作的Storyboard冲突问题,但是对于Storyboard开发效率之高还是比较划算的.在之前的博客中也提到过,团队合作使用Storyb ...