luogu P5606 小 K 与毕业旅行 - 构造 - 多项式
题目传送门
先考虑 $a_i > 0$ 的情况。考虑构造这样一个顺序:$a_i$ 要么和后面的数的乘积都大于 $w$ 要么都小于等于 $w$。
这个构造可以这样做:
- vector<int> b {0};
- sort(a.begin(), a.end());
- int l = 0, r = (signed) a.size() - 1;
- while (l <= r) {
- if (1ll * a[l] * a[r] > w) {
- b.push_back(b.back() - 1);
- r--;
- } else {
- b.push_back(b.back() + 1);
- l++;
- }
- }
- b.pop_back();
这个可以考虑根号分治,反复尝试 4 种枚举顺序可以发现。
那么按顺序枚举每个 $a_i$,我们知道它可以插入的位置的数量。如果它和后面的数的乘积都大于 $w$,那么可行位置减 1,否则加 1.
考虑没有这个限制条件怎么做,考虑正负分开,计算一下段数,最后再合并。
枚举一下初始可行段数量,用分治 NTT 求出方案数关于初始可行段数量多项式,然后多点求值,然后一遍卷积做一下二项式反演。
时间复杂度 $O(n\log^2 n)$。
下面是验题的时候写的代码。
Code
- #include <bits/stdc++.h>
- using namespace std;
- typedef bool boolean;
- #define ll long long
- template <typename T>
- void pfill(T* pst, const T* ped, T val) {
- for ( ; pst != ped; *(pst++) = val);
- }
- template <typename T>
- void pcopy(T* pst, const T* ped, T* pval) {
- for ( ; pst != ped; *(pst++) = *(pval++));
- }
- const int N = 262144;
- const int Mod = 998244353;
- const int bzmax = 19;
- const int g = 3;
- void exgcd(int a, int b, int& x, int& y) {
- if (!b) {
- x = 1, y = 0;
- } else {
- exgcd(b, a % b, y, x);
- y -= (a / b) * x;
- }
- }
- int inv(int a, int Mod) {
- int x, y;
- exgcd(a, Mod, x, y);
- return (x < 0) ? (x + Mod) : (x);
- }
- template <const int Mod = :: Mod>
- class Z {
- public:
- int v;
- Z() : v(0) { }
- Z(int x) : v(x){ }
- Z(ll x) : v(x % Mod) { }
- friend Z operator + (const Z& a, const Z& b) {
- int x;
- return Z(((x = a.v + b.v) >= Mod) ? (x - Mod) : (x));
- }
- friend Z operator - (const Z& a, const Z& b) {
- int x;
- return Z(((x = a.v - b.v) < 0) ? (x + Mod) : (x));
- }
- friend Z operator * (const Z& a, const Z& b) {
- return Z(a.v * 1ll * b.v);
- }
- friend Z operator ~ (const Z& a) {
- return inv(a.v, Mod);
- }
- friend Z operator - (const Z& a) {
- return Z(0) - a;
- }
- Z& operator += (Z b) {
- return *this = *this + b;
- }
- Z& operator -= (Z b) {
- return *this = *this - b;
- }
- Z& operator *= (Z b) {
- return *this = *this * b;
- }
- friend boolean operator == (const Z& a, const Z& b) {
- return a.v == b.v;
- }
- };
- typedef Z<> Zi;
- Zi qpow(Zi a, int p) {
- if (p < Mod - 1)
- p += Mod - 1;
- Zi rt = 1, pa = a;
- for ( ; p; p >>= 1, pa = pa * pa) {
- if (p & 1) {
- rt = rt * pa;
- }
- }
- return rt;
- }
- const Zi inv2 ((Mod + 1) >> 1);
- class NTT {
- private:
- Zi gn[bzmax + 4], _gn[bzmax + 4];
- public:
- NTT() {
- for (int i = 0; i <= bzmax; i++) {
- gn[i] = qpow(Zi(g), (Mod - 1) >> i);
- _gn[i] = qpow(Zi(g), -((Mod - 1) >> i));
- }
- }
- void operator () (Zi* f, int len, int sgn) {
- for (int i = 1, j = len >> 1, k; i < len - 1; i++, j += k) {
- if (i < j)
- swap(f[i], f[j]);
- for (k = len >> 1; k <= j; j -= k, k >>= 1);
- }
- Zi *wn = (sgn > 0) ? (gn + 1) : (_gn + 1), w, a, b;
- for (int l = 2, hl; l <= len; l <<= 1, wn++) {
- hl = l >> 1, w = 1;
- for (int i = 0; i < len; i += l, w = 1) {
- for (int j = 0; j < hl; j++, w *= *wn) {
- a = f[i + j], b = f[i + j + hl] * w;
- f[i + j] = a + b;
- f[i + j + hl] = a - b;
- }
- }
- }
- if (sgn < 0) {
- Zi invlen = ~Zi(len);
- for (int i = 0; i < len; i++) {
- f[i] *= invlen;
- }
- }
- }
- int correct_len(int len) {
- int m = 1;
- for ( ; m <= len; m <<= 1);
- return m;
- }
- } NTT;
- void pol_inverse(Zi* f, Zi* g, int n) {
- static Zi A[N];
- if (n == 1) {
- g[0] = ~f[0];
- } else {
- int hn = (n + 1) >> 1, t = NTT.correct_len(n << 1 | 1);
- pol_inverse(f, g, hn);
- pcopy(A, A + n, f);
- pfill(A + n, A + t, Zi(0));
- pfill(g + hn, g + t, Zi(0));
- NTT(A, t, 1);
- NTT(g, t, 1);
- for (int i = 0; i < t; i++) {
- g[i] = g[i] * (Zi(2) - g[i] * A[i]);
- }
- NTT(g, t, -1);
- pfill(g + n, g + t, Zi(0));
- }
- }
- void pol_sqrt(Zi* f, Zi* g, int n) {
- static Zi A[N], B[N];
- if (n == 1) {
- g[0] = f[0];
- } else {
- int hn = (n + 1) >> 1, t = NTT.correct_len(n + n);
- pol_sqrt(f, g, hn);
- pfill(g + hn, g + n, Zi(0));
- for (int i = 0; i < hn; i++)
- A[i] = g[i] + g[i];
- pfill(A + hn, A + t, Zi(0));
- pol_inverse(A, B, n);
- pcopy(A, A + n, f);
- pfill(A + n, A + t, Zi(0));
- NTT(A, t, 1);
- NTT(B, t, 1);
- for (int i = 0; i < t; i++)
- A[i] *= B[i];
- NTT(A, t, -1);
- for (int i = 0; i < n; i++)
- g[i] = g[i] * inv2 + A[i];
- }
- }
- typedef class Poly : public vector<Zi> {
- public:
- using vector<Zi>::vector;
- Poly& fix(int sz) {
- resize(sz);
- return *this;
- }
- } Poly;
- Poly operator + (Poly A, Poly B) {
- int n = A.size(), m = B.size();
- int t = max(n, m);
- A.resize(t), B.resize(t);
- for (int i = 0; i < t; i++) {
- A[i] += B[i];
- }
- return A;
- }
- Poly operator - (Poly A, Poly B) {
- int n = A.size(), m = B.size();
- int t = max(n, m);
- A.resize(t), B.resize(t);
- for (int i = 0; i < t; i++) {
- A[i] -= B[i];
- }
- return A;
- }
- Poly sqrt(Poly a) {
- Poly rt (a.size());
- pol_sqrt(a.data(), rt.data(), a.size());
- return rt;
- }
- Poly operator * (Poly A, Poly B) {
- int n = A.size(), m = B.size();
- int k = NTT.correct_len(n + m - 1);
- if (n < 20 || m < 20) {
- Poly rt (n + m - 1);
- for (int i = 0; i < n; i++) {
- for (int j = 0; j < m; j++) {
- rt[i + j] += A[i] * B[j];
- }
- }
- return rt;
- }
- A.resize(k), B.resize(k);
- NTT(A.data(), k, 1);
- NTT(B.data(), k, 1);
- for (int i = 0; i < k; i++) {
- A[i] *= B[i];
- }
- NTT(A.data(), k, -1);
- A.resize(n + m - 1);
- return A;
- }
- Poly operator ~ (Poly f) {
- int n = f.size(), t = NTT.correct_len((n << 1) | 1);
- Poly rt (t);
- f.resize(t);
- pol_inverse(f.data(), rt.data(), n);
- rt.resize(n);
- return rt;
- }
- Poly operator / (Poly A, Poly B) {
- int n = A.size(), m = B.size();
- if (n < m) {
- return Poly {0};
- }
- int r = n - m + 1;
- reverse(A.begin(), A.end());
- reverse(B.begin(), B.end());
- A.resize(r), B.resize(r);
- A = A * ~B;
- A.resize(r);
- reverse(A.begin(), A.end());
- return A;
- }
- Poly operator % (Poly A, Poly B) {
- int n = A.size(), m = B.size();
- if (n < m) {
- return A;
- }
- if (m == 1) {
- return Poly {0};
- }
- A = A - A / B * B;
- A.resize(m - 1);
- return A;
- }
- Zi Inv[N];
- void init_inv(int n) {
- Inv[0] = 0, Inv[1] = 1;
- for (int i = 2; i <= n; i++) {
- Inv[i] = Inv[Mod % i] * Zi((Mod - (Mod / i)));
- }
- }
- void diff(Poly& f) {
- if (f.size() == 1) {
- f[0] = 0;
- return;
- }
- for (int i = 1; i < (signed) f.size(); i++) {
- f[i - 1] = f[i] * Zi(i);
- }
- f.resize(f.size() - 1);
- }
- void integ(Poly& f) {
- f.resize(f.size() + 1);
- for (int i = (signed) f.size() - 1; i; i--) {
- f[i] = f[i - 1] * Inv[i];
- }
- f[0] = 0;
- }
- Poly ln(Poly f) {
- int n = f.size();
- Poly h = f;
- diff(h);
- f = h * ~f;
- f.resize(n - 1);
- integ(f);
- return f;
- }
- void pol_exp(Poly& f, Poly& g, int n) {
- Poly h;
- if (n == 1) {
- g.resize(1);
- g[0] = 1;
- } else {
- int hn = (n + 1) >> 1;
- pol_exp(f, g, hn);
- h.resize(n), g.resize(n);
- pcopy(h.data(), h.data() + n, f.data());
- g = g * (Poly{1} - ln(g) + h);
- g.resize(n);
- }
- }
- Poly exp(Poly f) {
- int n = f.size();
- Poly rt;
- pol_exp(f, rt, n);
- return rt;
- }
- class PolyBuilder {
- protected:
- int num;
- Poly P[N << 1];
- void _init(int *x, int l, int r) {
- if (l == r) {
- P[num++] = Poly{-Zi(x[l]), Zi(1)};
- return;
- }
- int mid = (l + r) >> 1;
- int curid = num++;
- _init(x, l, mid);
- int rid = num;
- _init(x, mid + 1, r);
- P[curid] = P[curid + 1] * P[rid];
- }
- void _evalute(Poly f, Zi* y, int l, int r) {
- f = f % P[num++];
- if (l == r) {
- y[l] = f[0];
- return;
- }
- int mid = (l + r) >> 1;
- _evalute(f, y, l, mid);
- _evalute(f, y, mid + 1, r);
- }
- public:
- Poly evalute(Poly f, int* x, int n) {
- Poly rt(n);
- num = 0;
- _init(x, 0, n - 1);
- num = 0;
- _evalute(f, rt.data(), 0, n - 1);
- return rt;
- }
- } PolyBuilder;
- ostream& operator << (ostream& os, Poly& f) {
- for (auto x : f)
- os << x.v << ' ';
- os << '\n';
- return os;
- }
- Zi fac[N], _fac[N];
- void init_fac(int n) {
- fac[0] = 1;
- for (int i = 1; i <= n; i++) {
- fac[i] = fac[i - 1] * i;
- }
- _fac[n] = ~fac[n];
- for (int i = n; i; i--) {
- _fac[i - 1] = _fac[i] * i;
- }
- }
- int w;
- Poly dividing(int* a, int l, int r) {
- if (l == r)
- return Poly {a[l], 1};
- int mid = (l + r) >> 1;
- return dividing(a, l, mid) * dividing(a, mid + 1, r);
- }
- int xs[N];
- Poly work(vector<int> a, int maxseg) {
- if (!a.size()) {
- Poly rt (maxseg, Zi(0));
- rt[0] = 1;
- return rt;
- }
- for (auto& x : a)
- (x < 0) && (x = -x);
- vector<int> b {0};
- sort(a.begin(), a.end());
- int l = 0, r = (signed) a.size() - 1;
- while (l <= r) {
- if (1ll * a[l] * a[r] > w) {
- b.push_back(b.back() - 1);
- r--;
- } else {
- b.push_back(b.back() + 1);
- l++;
- }
- }
- b.pop_back();
- for (auto& x : b)
- (x < 0) && (x += Mod);
- Poly f = dividing(b.data(), 0, (signed) b.size() - 1);
- f = PolyBuilder.evalute(f, xs, maxseg);
- for (int i = 0; i < (signed) f.size(); i++) {
- f[i] *= _fac[i];
- }
- Poly g (f.size());
- for (int i = 0; i < (signed) g.size(); i++) {
- g[i] = _fac[i];
- (i & 1) && (g[i] = -g[i], 0);
- }
- f = (f * g).fix(maxseg);
- for (int i = 0; i < (signed) f.size(); i++)
- f[i] *= fac[i];
- return f;
- }
- int n;
- int a[N];
- int main() {
- scanf("%d%d", &n, &w);
- vector<int> A, B;
- for (int i = 1; i <= n; i++) {
- scanf("%d", a + i);
- if (a[i] < 0) {
- A.push_back(a[i]);
- } else {
- B.push_back(a[i]);
- }
- }
- init_fac(n + 3);
- int maxseg = min(A.size(), B.size()) + 3;
- for (int i = 1; i < maxseg; i++)
- xs[i] = i;
- Poly f = work(A, maxseg);
- Poly g = work(B, maxseg);
- Zi ans = 0;
- for (int i = 0; i < maxseg; i++) {
- ans += f[i] * g[i] * 2;
- if (i)
- ans += f[i] * g[i - 1];
- if (i < maxseg - 1)
- ans += f[i] * g[i + 1];
- }
- printf("%d\n", ans.v);
- return 0;
- }
luogu P5606 小 K 与毕业旅行 - 构造 - 多项式的更多相关文章
- [Luogu] P1993 小K的农场
题目描述 小K在MC里面建立很多很多的农场,总共n个,以至于他自己都忘记了每个农场中种植作物的具体数量了,他只记得一些含糊的信息(共m个),以下列三种形式描述: 农场a比农场b至少多种植了c个单位的作 ...
- Luogu P1993 小 K 的农场
其实很早以前就打好了,但一直忘记写了. 也就是差分约束的模板题. 关于差分约束,也就是用来求关于一些不等式互相约束算出最优解. 推荐一个讲的很好的博客:http://www.cppblog.com/m ...
- 【luogu P1993 小K的农场】 题解
题目链接:https://www.luogu.org/problemnew/show/P1993 1.差分约束: 对于a - b <= c 有一条 b-->a 权值为c 对于a - b & ...
- luogu 1993 小K的农场
差分约束+spfa判负环 dfs判负环 #include<bits/stdc++.h> #define rep(i,x,y) for(register int i=x;i<=y;i+ ...
- 『题解』洛谷P1993 小K的农场
更好的阅读体验 Portal Portal1: Luogu Description 小\(K\)在\(\mathrm MC\)里面建立很多很多的农场,总共\(n\)个,以至于他自己都忘记了每个农场中种 ...
- Luogu 1081 【NOIP2012】开车旅行 (链表,倍增)
Luogu 1081 [NOIP2012]开车旅行 (链表,倍增) Description 小A 和小B决定利用假期外出旅行,他们将想去的城市从1到N 编号,且编号较小的城市在编号较大的城市的西边,已 ...
- BZOJ-1143&&BZOJ-2718 祭祀river&&毕业旅行 最长反链(Floyed传递闭包+二分图匹配)
蛋蛋安利的双倍经验题 1143: [CTSC2008]祭祀river Time Limit: 10 Sec Memory Limit: 162 MB Submit: 1901 Solved: 951 ...
- BZOJ2718: [Violet 4]毕业旅行
2718: [Violet 4]毕业旅行 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 229 Solved: 126[Submit][Status ...
- 洛谷P1993 小K的农场 [差分约束系统]
题目传送门 小K的农场 题目描述 小K在MC里面建立很多很多的农场,总共n个,以至于他自己都忘记了每个农场中种植作物的具体数量了,他只记得一些含糊的信息(共m个),以下列三种形式描述: 农场a比农场b ...
随机推荐
- poj-3404 Bridge over a rough river Ad Hoc
Bridge over a rough river POJ - 3404 Bridge over a rough river Time Limit: 1000MS Memory Limit: 65 ...
- Ubuntu18.04下修改快捷键
Ubuntu下修改快捷键 Intelij Idea在Ubuntu下的快捷键几乎和windows差不多,最常用的一个快捷键与系统冲突: Ctrl + Alt + T idea是surround with ...
- Autoware 培训笔记 No. 3——录制航迹点
1.前言 航迹点用于知道汽车运行,autoware的每个航迹点包含x, y, z, yaw, velocity信息. 航迹点录制有两种方式,可以开车录制航迹点,也可以采集数据包,线下录制航迹点,我分开 ...
- 一个简单的利用 WebClient 异步下载的示例(二)
继上一篇 一个简单的利用 WebClient 异步下载的示例(一) 后,我想把核心的处理提取出来,成 SkyWebClient,如下: 1. SkyWebClient 该构造函数中 downloadC ...
- 发布.net core项目 System.AggregateException: 发生一个或多个错误
背景:之前创建.net core webapi项目的时候SDK是2.2的版本,后改成2.1,发布的时候报错. 发布的时候报错,展示的信息是: 其实这里也大致能看到部分信息,但由于信息量太小,没办法知道 ...
- CentOS系统安装Python3
准备: CentOS 6.4系统 Python-3.6.5.tgz 下载地址: 官网:https://www.python.org/downloads/release/python-365/ 镜像:h ...
- Java中级知识归纳(二)
六.Java中Collection和Collections的区别? java.util.Collection是一个集合接口,它提供了对集合对象进行基本操作的通用接口方法. java.util.Coll ...
- jsonHelper帮助类
使用前,需引用开源项目类using Newtonsoft.Json 链接:https://pan.baidu.com/s/1htK784XyRCl2XaGGM7RtEg 提取码:gs2n using ...
- 续~ES6 新语法 (symbol、set集合、 数组对象的filter(),reduce(),weakset(),map()方法)
一.symbol 回顾数据类型: 基本类型(原始类型): String Number Boolean Undifined Null Symbol 引用类型: Objects 1.1 创建symbol ...
- js字符串转为数字方法parseInt()、减号、乘号、JSON.parse()、Number()的效率比较
var a = '1'; var b = '0x1'; var runTest = function(timeTag, testFunction) { console.time(timeTag); f ...