6401 创世纪 0x60「图论」例题

描述

上帝手中有 N(N≤10^6) 种世界元素,每种元素可以限制另外1种元素,把第 i 种世界元素能够限制的那种世界元素记为 A[i]。现在,上帝要把它们中的一部分投放到一个新的空间中去建造世界。为了世界的和平与安宁,上帝希望所有被投放的世界元素都有至少一个没有被投放的世界元素限制它。上帝希望知道,在此前提下,他最多可以投放多少种世界元素?

输入格式

第一行是一个整数N,表示世界元素的数目。

第二行有N 个整数A1, A2, …, AN。Ai 表示第i 个世界元素能够限制的世界元素的编号。

输出格式

一个整数,表示最多可以投放的世界元素的数目。

样例输入

6
2 3 1 3 6 5

样例输出

3

数据范围与约定

  • 对于30%的数据:
  • 对于60%的数据:
  • 对于100%的数据:

样例解释

对于30% 的数据,N≤10。

对于100% 的数据,N≤10^6,1≤Ai≤N。

来源

石家庄二中【Nescafé 8】杯NOIP模拟赛

        </article>

题解

基环树上上司的舞会。经典做法:两次DP,一次断开,一次强制链接(通过适当的条件和赋值实现)。

对于这题,可以预处理son子树中的DP值,然后分类时特判不再对son进行DP,赋值调用即可。

时间复杂度\(O(n)\)

#include<bits/stdc++.h>
#define rg register
#define il inline
#define co const
template<class T>il T read(){
rg T data=0,w=1;rg char ch=getchar();
for(;!isdigit(ch);ch=getchar())if(ch=='-') w=-w;
for(;isdigit(ch);ch=getchar()) data=data*10+ch-'0';
return data*w;
}
template<class T>il T read(rg T&x) {return x=read<T>();}
typedef long long ll;
using namespace std; co int N=1e6+1,INF=0x3f3f3f3f;
int n,fa[N],t,k,f[N][2],s[N][2],ans;
int Head[N],Edge[N*2],Next[N*2],tot; int get(int x) {return fa[x]==x?x:fa[x]=get(fa[x]);}
il void add(int x,int y){
Edge[++tot]=y,Next[tot]=Head[x],Head[x]=tot;
}
void dfs(int x){
int num=INF;
f[x][0]=0;
for(int i=Head[x];i;i=Next[i]){
if(Edge[i]!=k) dfs(Edge[i]);
f[x][0]+=max(f[Edge[i]][0],f[Edge[i]][1]);
num=min(num,max(f[Edge[i]][0],f[Edge[i]][1])-f[Edge[i]][0]);
}
f[x][1]=f[x][0]+1-num;
}
int main(){
read(n);
for(int i=1;i<=n;++i) fa[i]=i;
for(int i=1;i<=n;++i){
int x=read<int>();
int p=get(x),q=get(i);
if(p==q) s[++t][0]=x,s[t][1]=i;
else add(x,i),fa[q]=p;
}
for(int i=1;i<=t;++i){
k=0;
dfs(s[i][0]);
k=s[i][0];
dfs(s[i][1]);
int now=max(f[s[i][1]][0],f[s[i][1]][1]);
f[s[i][0]][1]=f[s[i][0]][0]+1;
dfs(s[i][1]);
ans+=max(now,f[s[i][1]][0]);
}
printf("%d\n",ans);
return 0;
}

CH6401 创世纪的更多相关文章

  1. Poetize4 创世纪

    3037: 创世纪 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 123  Solved: 66[Submit][Status] Description ...

  2. 为创世纪图书馆(Library Genesis)作镜像

    简介 Library Genesis的Wikipedia条目中的介绍是: Library Genesis or LibGen is a search engine for articles and b ...

  3. 编程哲学之C#篇:01——创世纪

    我们能否像神一样地创建一个世界? 对于创建世界而言,程序员的创作能力最接近于神--相对于导演,作家,漫画家而言,他们创建的世界(作品)一旦完成,就再也不会变化,创建的角色再也不会成长.而程序员创建的世 ...

  4. 【BZOJ3037/2068】创世纪/[Poi2004]SZP 树形DP

    [BZOJ3037]创世纪 Description applepi手里有一本书<创世纪>,里面记录了这样一个故事……上帝手中有着N 种被称作“世界元素”的东西,现在他要把它们中的一部分投放 ...

  5. [bzoj3037/2068]创世纪[Poi2004]SZP_树形dp_并查集_基环树

    创世纪 SZP bzoj-3037/2068 Poi-2004 题目大意:给你n个物品,每个物品可以且仅可以控制一个物品.问:选取一些物品,使得对于任意的一个被选取的物品来讲,都存在一个没有被选取的物 ...

  6. 图形学创世纪——写在SIGGRAPH 40年的边上

    40年的边上" title="图形学创世纪--写在SIGGRAPH 40年的边上"> 前言: SIGGRAPH是由ACM SIGGRAPH(美国计算机协会计算机图形 ...

  7. JZOJ 3929. 【NOIP2014模拟11.6】创世纪

    3929. [NOIP2014模拟11.6]创世纪 (Standard IO) Time Limits: 1000 ms Memory Limits: 65536 KB Description 上帝手 ...

  8. T1创世纪(原创)

    创世纪 这是我的第一道原创题 题解: 这道题的核心算法是:加维度的最短路+贪心 状态:\(dis[i][j][t][a]\)表示在 \(t\) 时,到达 \((i,j)\) ,当前共造\(a\)只&q ...

  9. bzoj3037 创世纪

    两种解法: 一.树状DP /*by SilverN*/ #include<iostream> #include<algorithm> #include<cstring&g ...

随机推荐

  1. NGINX安全配置和限制访问

    说起网络攻击,可能很多人只知道大名鼎鼎的DDOS攻击,这种攻击廉价且效果出众,直接通过第四层网络协议用他的带宽把你的带宽顶掉,造成网路阻塞,防不胜防,就连腾讯这种大鳄公司也被大流量DDOS搞过焦头烂额 ...

  2. TCP/IP学习笔记5--网络的构成要素

    人的灵魂来自一个完美的家园,那里没有任何污秽和丑陋,只有纯净和美丽.----大鱼海棠 1.通信媒介与数据链路 计算机之间通过各种电缆相互连接. 2.网卡 任何一台计算机接入网络都需要网卡,又称网络适配 ...

  3. hashMap常见问题

    [解析hashMap的源码实现]      点击进入hashMap的源码实现 0.谈谈对hashMap的理解? 从底层结构.存取.扩容.冲突.实现原理.源码等方面说明. 1.你知道哪些常用的Map集合 ...

  4. ERP解析外围系统json数据格式

    外围系统调用ERP的WebService接口,将数据以json格式传到ERP,ERP解析json 1.创建java source jsp,提供java方法解析json数据 create or repl ...

  5. Linux下的JMeter部署及使用

    之前都是在windows环境使用JMeter,是有操作界面的.但是最近需要在Linux环境下使用,现将操作步骤记录下来 在安装JMeter之前,需要在Linux下安装JDK并配置环境变量,这里跳过 1 ...

  6. win10 远程连接怎么设置快捷方式

    在桌面空白处右键,选择新建快捷方式,然后输入命令:C:\windows\system32\mstsc.exe,点击下一步,然后输入快捷方式名称:远程连接,点击确定即可.

  7. 我在LeetCode的首次刷题

    到现在为止,我才发现我的博客一篇感受,心得,体会之言都没有. 今天就来随便扯扯. 刷题,是我最近一直在干的事情.也就每天写一两个.忘了就没写这种.也收藏了好几个刷题网站,当然第一次接触肯定是 WUST ...

  8. Dubbo快速入门 三

    3.dubbo环境搭建 3.1).[windows]-安装zookeeper 1.下载zookeeper 网址 https://archive.apache.org/dist/zookeeper/zo ...

  9. Android手机的分区以及一些刷机术语的了解

    最早以前的手机基本都是下载一个刷机软件(像刷机精灵.刷机大师),一键root,一键刷机,这就以前的傻瓜式刷机,至少我在高中(2015年开始接触)的时候也是这么干的.那时候,好像有种手机开机界面会出现“ ...

  10. Relative Sort Array

    Relative Sort Array Given two arrays arr1 and arr2, the elements of arr2 are distinct, and all eleme ...