luogu P3975 [TJOI2015]弦论

链接

bzoj

思路

建出sam。

子串算多个的,统计preant tree的子树大小,否则就是大小为1

然后再统计sam的节点能走到多少串。

然后就可以在sam的贪心的走了。

代码

#include <bits/stdc++.h>
#define FOR(i,a,b) for(int i=a;i<=b;++i)
#define ROF(i,a,b) for(int i=a;i>=b;--i)
using namespace std;
const int N=5e5+7;
int n,t,k,c[N<<1],a[N<<1];
char s[N];
struct node {
int len,fa,ch[26];
}dian[N<<1];
int siz[N<<1],las=1,tot=1,sum[N<<1];
void add(int c) {
int p=las;int np=las=++tot;
dian[np].len=dian[p].len+1;
for(;p&&!dian[p].ch[c];p=dian[p].fa) dian[p].ch[c]=np;
if(!p) dian[np].fa=1;
else {
int q=dian[p].ch[c];
if(dian[q].len==dian[p].len+1) dian[np].fa=q;
else {
int nq=++tot;
dian[nq]=dian[q];
dian[nq].len=dian[p].len+1;
dian[q].fa=dian[np].fa=nq;
for(;p&&dian[p].ch[c]==q;p=dian[p].fa)
dian[p].ch[c]=nq;
}
}
siz[las]=1;
}
int js;
void find(int u,int k) {
if(k<=siz[u]) return;
k-=siz[u];
FOR(i,0,25) {
if(sum[dian[u].ch[i]]>=k) {
printf("%c",'a'+i);
find(dian[u].ch[i],k);
return;
}
k-=sum[dian[u].ch[i]];
}
}
int main() {
scanf("%s",s+1);
n=strlen(s+1);
scanf("%d%d",&t,&k);
FOR(i,1,n) add(s[i]-'a');
FOR(i,1,tot) c[dian[i].len]++;
FOR(i,1,tot) c[i]+=c[i-1];
FOR(i,1,tot) a[c[dian[i].len]--]=i;
ROF(i,tot,1)
if(t) siz[dian[a[i]].fa]+=siz[a[i]];
else siz[a[i]]=1;
siz[0]=siz[1]=0;
ROF(i,tot,1) {
sum[a[i]]+=siz[a[i]];
FOR(j,0,25) sum[a[i]]+=sum[dian[a[i]].ch[j]];
}
if(k>sum[1]) puts("-1");
else find(1,k);
return 0;
}

luogu P3975 [TJOI2015]弦论 SAM的更多相关文章

  1. Luogu P3975 [TJOI2015]弦论

    题目链接 \(Click\) \(Here\) 题目大意: 重复子串不算的第\(k\)大子串 重复子串计入的第\(k\)大子串 写法:后缀自动机. 和\(OI\) \(Wiki\)上介绍的写法不太一样 ...

  2. 洛谷 P3975 [TJOI2015]弦论 解题报告

    P3975 [TJOI2015]弦论 题目描述 为了提高智商,ZJY开始学习弦论.这一天,她在<String theory>中看到了这样一道问题:对于一个给定的长度为\(n\)的字符串,求 ...

  3. 【BZOJ 3998】 3998: [TJOI2015]弦论 (SAM )

    3998: [TJOI2015]弦论 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 2627  Solved: 881 Description 对于一 ...

  4. bzoj3998: [TJOI2015]弦论(SAM+dfs)

    3998: [TJOI2015]弦论 题目:传送门 题解: SAM的入门题目(很好的复习了SAM并加强Right集合的使用) 其实对于第K小的字符串直接从root开始一通DFS就好,因为son边是直接 ...

  5. P3975 [TJOI2015]弦论

    思路 一眼SAM板子,结果敲了一中午... 我还是太弱了 题目要求求第k小的子串 我们可以把t=0当成t=1的特殊情况,(所有不同位置的相同子串算作一个就是相当于把所有子串的出现位置个数(endpos ...

  6. BZOJ3998:[TJOI2015]弦论(SAM)

    Description 对于一个给定长度为N的字符串,求它的第K小子串是什么. Input 第一行是一个仅由小写英文字母构成的字符串S 第二行为两个整数T和K,T为0则表示不同位置的相同子串算作一个. ...

  7. [洛谷P3975][TJOI2015]弦论

    题目大意:求一个字符串的第$k$大字串,$t$表示长得一样位置不同的字串是否算多个 题解:$SAM$,先求出每个位置可以到达多少个字串($Right$数组),然后在转移图上$DP$,若$t=1$,初始 ...

  8. 并不对劲的bzoj3998:loj2102:p3975:[TJOI2015]弦论

    题目大意 对于一个给定的长度为n(\(n\leq5*10^5\))的字符串, 分别求出不同位置的相同子串算作一个.不同位置的相同子串算作多个时,它的第k(\(k\leq10^9\))小子串是什么 题解 ...

  9. 【BZOJ3998】[TJOI2015]弦论 后缀自动机

    [BZOJ3998][TJOI2015]弦论 Description 对于一个给定长度为N的字符串,求它的第K小子串是什么. Input 第一行是一个仅由小写英文字母构成的字符串S 第二行为两个整数T ...

随机推荐

  1. Java多线程分批发送消息的小例子

    需求: 假设有10万个用户,现在节假日做活动,需要给每个用户发送一条活动短信,为了提高程序的效率,建议使用多线程分批发送. 这里值得注意的是: 每开一个线程都会占用CPU的资源,所以线程根据所需要的条 ...

  2. 彻底搞懂Javascript的this

    在Javascript中,最玄妙的特性之一,就是this的指向玄幻莫测,一会儿指向这一会儿指向那,让初学者十分伤脑筋. 本文总结一下,方便初学者掌握奥妙之处,同时方便老鸟温故而知新. 首先,看一段代码 ...

  3. How to signout from an Azure Application?(转载)

    问: I have created a Azure AD application and a Web App. The Azure AD Application uses AAD Authentica ...

  4. N(C)O(S)I(P)P 2019 退役记

    N(C)O(S)I(P)P 2019 退役记 day-4 今天下午老师突然咕了,于是一下午欢乐时光 今天上午考试T3线段树维护个区间加,区间乘 一遍过编译,一遍过样例(第一次,俺比较弱(虽然也发现和暴 ...

  5. Vue搭建脚手架1

    Vue2.0搭建Vue脚手架(vue-cli) 此文章参考了网上一些前人的技术分享,自己拿过来总结一下.此文章是基于webpack构建的vue项目,并实现简单的单页面应用.其中利用到的相关技术会简单加 ...

  6. 渐进增强(progressive enhancement)、优雅降级(graceful degradation)

    渐进增强 progressive enhancement: 针对低版本浏览器进行构建页面,保证最基本的功能,然后再针对高级浏览器进行效果.交互等改进和追加功能达到更好的用户体验. 优雅降级 grace ...

  7. python可视化_matplotlib

    对于Python数据可视化库,matplotlib 已经成为事实上的数据可视化方面最主要的库,此外还有很多其他库,例如vispy,bokeh, seaborn,pyga,folium 和 networ ...

  8. 打造属于你的提供者(Provider = Strategy + Factory Method) 设计模式 - Provider Pattern(提供者模式)

    打造属于你的提供者(Provider = Strategy + Factory Method)   1.1.1 摘要 在日常系统设计中,我们也许听说过提供者模式,甚至几乎每天都在使用它,在.NET F ...

  9. Java开发环境之Gradle

    查看更多Java开发环境配置,请点击<Java开发环境配置大全> 拾伍章:Gradle安装教程 1)下载Gradle安装包 官网下载:https://gradle.org/releases ...

  10. Prometheus学习笔记(6)Alertmanager告警

    目录 一.Alertmanager简介 二.Alertmanager部署 三.Alertmanager配置 四.自定义告警规则和发送 五.自定义告警模板 一.Alertmanager简介 Promet ...