第2课 auto类型推导(1)
第2课 auto类型推导(1)
一、auto类型推导
(一)与模板类型推导映射关系
1、auto类型推导与模板类型推导可以建立一一映射关系,它们之间存在双向的算法变换。auto扮演模板中T的角色,而变量的类型及修饰词(如const或引用)扮演ParamType的角色。
2、举例说明两者映射关系:(auto相当于T)
(1)与auto x = 27等价的函数模板
template<typename T> void func_x(T param); //T ←→ auto,即auto x 相当于这里的T param func_x();
(2)与const auto cx = x等价的函数模板
template<typename T> void func_x(const T param); // const auto ←→ const T func_cx(x);
(3)与const auto& rx = x;等价的函数模板
template<typename T> void func_crx(const T& param); // const auto&←→const T& func_crx(x);
(二)auto类型推导规则(与函数模板推导规则基本一致)
1、推导规则:
①规则1:auto& x或auto* x,即指针或引用时。(与函数模板推导规则1类似)
②规则2:auto&& x,即万能引用时。(与函数模板推导规则2类似)
③规则3:auto x,即按值推导(非指针也非引用,与函数模板推导规则3类似)
2、注意事项:
①auto声明的变量必须马上初始化,以让编译器推断出它的实际类型。
②与函数模板推导类似,auto x总是推导出值类型,auto&&总是推导出引用类型(可能左值引用,也可能是右值引用)。
③auto不能用于函数形参(但可用于lambda表达式形参的自动推导)
【编程实验】auto类型推导
#include <iostream>
#include <boost/type_index.hpp> using namespace std;
using boost::typeindex::type_id_with_cvr; //辅助类模板,用于打印T的类型
template <typename T>
void printType(string s)
{
cout <<s <<" = "<< type_id_with_cvr<T>().pretty_name() << endl;
} //测试函数
void myfunc(int, double)
{
} int main()
{
//规则3:按值推导,如auto x
auto x = ;
const auto cx = x;
int& a = x;
auto ra = a; //由于按值推导,a的引用会被忽略,故ra = int printType<decltype(cx)>("cx"); //cx = const int
printType<decltype(ra)>("ra"); //ra = int //规则1:auto引用或指针(auto&和auto*)
const auto& rx = x; //auto=int, rx=const int&
const auto* const px = &x; //auto=int, px=const int* const;
const volatile auto cvx = x; //cvx = const volatile int;
auto* cpx = px; //cpx = const int* (注意:只保留px的底层const,而顶层const被舍弃!) printType<decltype(rx)>("rx"); //rx = const int&
printType<decltype(px)>("px"); //px=const int* const;
printType<decltype(cvx)>("cvx"); //cvx=const volatile int;
printType<decltype(cpx)>("cpx"); //cvx=const int*; //规则2:auto&&万能引用
auto&& uref1 = x; //用左值初始化,返回左值引用。auto=int&,x=int&
auto&& uref2 = cx;//用左值初始化,返回左值引用。由于是引用,会传为cv属性,即auto=const int&, uref2=const int&
auto&& uref3 = ;//用右值初始化,返回右值引用。即auto=int, uref3=int&&
auto&& uref4 = px;//用左值初始化,返回左值引用,由于引用表示变量本身,所以uref4=const int* const&。(顶层与底层const均保留) printType<decltype(uref1)>("uref1"); //uref1 = int&
printType<decltype(uref2)>("uref2"); //uref2 = const int&
printType<decltype(uref3)>("uref3"); //uref3 = int&&
printType<decltype(uref4)>("uref4"); //uref4 = const int* const & //数组或函数名类型的推导
const char name[] = "SantaClaus";
auto arr1 = name; //退化为数组指针: arr1 = const char*
auto& arr2 = name;//数组引用: arr2 = const char(&)[11] printType<decltype(arr1)>("arr1"); //arr1 = const char*
printType<decltype(arr2)>("arr2"); //arr2 = const char(&)[11] auto func1 = myfunc; //退化为函数指针:func1 = void(*)(int,double)
auto& func2 = myfunc;//数组引用:func2 = void(&)(int,double) printType<decltype(func1)>("func1"); //arr1 = const char*
printType<decltype(func2)>("func2"); //arr2 = const char(&)[11] // //new中使用auto
auto ax = new auto();
printType<decltype(ax)>("ax"); //ax = int return ;
}
/*输出结果:
cx = int const
ra = int
rx = int const &
px = int const * const
cvx = int const volatile
cpx = int const *
uref1 = int &
uref2 = int const &
uref3 = int &&
uref4 = int const * const &
arr1 = char const *
arr2 = char const (&)[11]
func1 = void (__cdecl*)(int,double)
func2 = void (__cdecl&)(int,double)
ax = int *
*/
二、auto推导的特殊规则
(一)auto声明的变量使用大括号初始化表达式进行初始化时,推导出的类型是initializer_list<T>类型。注意:采用“={}”初始化的才是initializer_list<T>类型,如果声明时直接在变量后面加{}的(如auto x{14},x为int类型,这里只能有一个元素,多了则编译不过!),则不是initializer_list<T>类型。
(二)C++14中,auto用于推导函数的返回值或lambda形参时,使用的是模板类型的推导,而不是auto类型的推导。需要特别注意的是,与auto推导最大的不同在于,模板类型推导时不会将{}初始化表达式推导为initializer_list<T>类型,而auto推导会!注意,这两者的区别!(见下面《编程实验》)
【编程实验】auto类型推导的特殊规则
#include <iostream>
#include <vector>
#include <boost/type_index.hpp> using namespace std;
using boost::typeindex::type_id_with_cvr; //辅助类模板,用于打印T的类型
template <typename T>
void printType(string s)
{
cout << s << " = " << type_id_with_cvr<T>().pretty_name() << endl;
} template<typename T>
//void func(initializer_list<T> param)
void func(T param)
{
cout << "T = " << type_id_with_cvr<T>().pretty_name() << endl;
cout << "param = " << type_id_with_cvr<decltype(param)>().pretty_name() << endl;
} //C++14允许auto用于推导函数的返回值
auto func_i()
{
return ; //采用模板类型推导,这里与auto的类型推导结果是一样的,返回值为int型。
} //auto createInitList()
//{
// //return { 1, 2, 3 }; //编译不通过!auto在返回值类型推导上采用的是模板类型推导。(见下面分析)
//} template<typename T>
auto createInitList() ->initializer_list<T>
{
return { , , }; //由于auto在返回值类型是采用模板类型而不是auto类型的来推导。
//而模板类推导时,不会将大括号推导为initializer_list,即return中从语句中的{}(是个
//initialize_list<int>类型)到auto采用的是模板类型推导,与func({1,2,3})类似,从这里
//推出这个是initializer_list<T>类型,所以必须在尾随的返回值表达式中要手动加
//上->initializer_list<T>
} int main()
{
auto x1 = ; //C++98语法: 类型为int
auto x2(); //同上 auto x3 = { }; //C++11语法:x3为initializer_list<int> <== 当auto遇到“={}”时(即(大括号赋值初始化)。
auto x4 {}; //C++11语法,类型为int,注意这种方式初始化为int,并且只能有一个元素。注意与x3的区别! printType<decltype(x1)>("x1");
printType<decltype(x2)>("x2");
printType<decltype(x3)>("x3");
printType<decltype(x4)>("x4"); //auto类型推导的特殊规则:可以将{}推导为initializer_list<T>类型。
auto x = { , , }; //x: initializer_list<int>类型,共有3个元素。
printType<decltype(x)>("x"); //模板类型推导时,无法将{}推导为initializer_list<T>类型
//func({ 8, 9, 10 }); //错误,此处的实参为initializer<int>类型,由于模板类型推导时无法将
//{8, 9, 10}推导为initializer_list<T>,编译失败。
//如果将形参改为intializer_list<T>,将可以编译成功! auto func_ret = createInitList<int>(); //func_ret = class std::initializer_list<int>
printType<decltype(func_ret)>("func_ret"); auto fi = func_i(); //fi = int
printType<decltype(fi)>("func_i"); //在lambda表达式形参中用auto声明的变量也不会将{}推导为initializer_list<T>类型。
std::vector<int> v = {, , , };
auto resetV = [&v](const auto& newValue) { //auto resetV = [&v](const initializer_list<int>& newValue) { v = newValue;
}; //resetV({ 5, 6, 7}); //lambda形参中的auto也是采用模板类型推导,因此推导时{}不会被自动推导为initializer_list<T> return ;
}
/*输出结果:
x1 = int
x2 = int
x3 = class std::initializer_list<int>
x4 = int
x = class std::initializer_list<int>
func_ret = class std::initializer_list<int>
func_i = int
*/
第2课 auto类型推导(1)的更多相关文章
- 第3课 auto类型推导(2)
第3课 auto类型推导(2) 一.使用auto的优势 (一)避免使用未初始化变量 (二)可简化变量/对象类型的声明 (三) 在某些场合无法判断出类型时,可用auto自动推导(如lambda表达式) ...
- 第4课 decltype类型推导
第4课 decltype类型推导 一.decltype类型推导 (一)语法: 1.语法:decltype(expr),其中的expr为变量(实体)或表达式 2.说明: ①decltype用于获取变量的 ...
- Effective Modern C++翻译(3)-条款2:明白auto类型推导
条款2 明白auto类型推导 如果你已经读完了条款1中有关模板类型推导的内容,那么你几乎已经知道了所有关于auto类型推导的事情,因为除了一个古怪的例外,auto的类型推导规则和模板的类型推导规则是一 ...
- auto类型推导
引言 auto : 类型推导. 在使用c++的时候会经常使用, 就像在考虑STL时迭代器类型, 写模板的时候使用auto能少写代码, 也能帮助我们避免一些隐患的细节. auto初始化 使用auto型别 ...
- 类型推导:函数模板与auto
1.从函数模板谈起 函数模板的类型推导机制是在c++98时代就有的,auto的类型推导机制与其基本一致,所以先理解函数模板类型推导. 函数模板可以用如下代码框架表示: #template<typ ...
- 《Effective Modern C++》翻译--条款2: 理解auto自己主动类型推导
条款2: 理解auto自己主动类型推导 假设你已经读过条款1关于模板类型推导的内容,那么你差点儿已经知道了关于auto类型推导的所有. 至于为什么auto类型推导就是模板类型推导仅仅有一个地方感到好奇 ...
- item 2: 理解auto类型的推导
本文翻译自modern effective C++,由于水平有限,故无法保证翻译完全正确,欢迎指出错误.谢谢! 博客已经迁移到这里啦 如果你已经读过item 1的模板类型推导,你已经知道大部分关于au ...
- c++11——auto,decltype类型推导
c++11中引入了auto和decltype关键字实现类型推导,通过这两个关键字不仅能够方便的获取复杂的类型,而且还能简化书写,提高编码效率. auto和decltype的类型推导都是编译器在 ...
- 模板类型推导、auto推导
effective modern c++ 果然是神书,干货满满,简单记录下. item1 模板推倒 典型的模板函数 temlate<class T> void fn(ParamType p ...
随机推荐
- sqlserver之datepart和datediff应用查找当天上午和下午的数据
DATEPART() 函数用于返回日期/时间的单独部分,比如年.月.日.小时.分钟等等. DATEDIFF() 函数返回两个日期之间的时间差. --查找当天上午的数据 ) --查找当天下午的数据 ) ...
- Python 绘图与可视化 matplotlib 动态条形图 bar
bar的参考链接:https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.bar.html 第一种办法 一种方法是每次都重新画,包括清除f ...
- python plotly画柱状图
代码 import pandas as pd import numpy as np import plotly.plotly as py import plotly.graph_objs as go ...
- MAC电脑卸载Jenkins
终端输入下面命令 '/Library/Application Support/Jenkins/Uninstall.command' zudeMoPro:~ zhu$ '/Library/Applica ...
- Dr. Memory Quickstart Instructions in Chinese
For similar insructions in English, please see RPI CSCI1200 instructions. 程序内存调试 程序内存错误有很多种,比如内存访问错误 ...
- kubernetes学习Service之headless和statefulSet结合
一.首先说headless Service和普通Service的区别 headless不分配clusterIP headless service可以通过解析service的DNS,返回所有Pod的地址 ...
- 深入理解Java封装、继承、多态
转载请注明原文地址:https://www.cnblogs.com/ygj0930/p/10830957.html 一:封装 将类的某些信息隐藏在类内部,不允许外部程序直接访问,而是通过该类提供的方法 ...
- ansible自动化运维01
ansible是基于Python开发,集合了众多运维工具(puppet.cfengine.chef.func.fabric)的优点,实现了批量系统配置.批量程序部署.批量运行命令等功能.ansible ...
- Game Engine Architecture 13
[Game Engine Architecture 13] 1.describe an arbitrary signal x[n] as a linear combination of unit im ...
- 第10节-BLE协议链路层(LL)
本篇博客的学些要结合书籍<低功耗蓝牙开发权威指南,Robin Heydon著>第7章,实际上这书只是对蓝牙原版协议的简化.摘要. 回顾以前学过的<BLE协议各层的形象化理解>和 ...