题意

\(\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}n\%i*m\%j*[i!=j]\)

\(\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}n\%i*m\%j-\sum\limits_{i=1}^{min(n,m)}n\%i*m\%i\)

\(\sum\limits_{i=1}^n(n-\lfloor\frac{n}{i}\rfloor*i)\sum\limits_{j=1}^m(m-\lfloor\frac{m}{j}\rfloor*j)-\sum\limits_{i=1}^{min(n,m)}n*m-(n*\lfloor\frac{m}{i}\rfloor+m*\lfloor\frac{n}{i}\rfloor)*i+\lfloor\frac{n}{i}\rfloor*\lfloor\frac{m}{i}\rfloor*i^2\)

除法分块就好了。

#include<bits/stdc++.h>
using namespace std;
#define int long long
const int mod=19940417;
const int inv6=3323403;
const int inf=1e9;
int n,m,ans;
inline int calc1(int l,int r){return ((l+r)*(r-l+1)/2)%mod;}
inline int calc2(int x){return x*(x+1)%mod*(2*x+1)%mod*inv6%mod;}
inline int calc(int x)
{
int res=0;
for(int l=1,r;l<=x;l=r+1)
{
r=x/(x/l);
int tmp=x*(r-l+1)%mod-(x/l)*calc1(l,r)%mod;
res=((res+tmp)%mod+mod)%mod;
}
return res;
}
signed main()
{
scanf("%lld%lld",&n,&m);
if(n>m)swap(n,m);
ans=calc(n)*calc(m)%mod;
for(int l=1,r;l<=n;l=r+1)
{
r=min(n/(n/l),m/(m/l));
int tmp1,tmp2,tmp3;
tmp1=n*m%mod*(r-l+1)%mod;
tmp2=(n*(m/l)%mod+m*(n/l)%mod)%mod*calc1(l,r)%mod;
tmp3=(n/l)*(m/l)%mod*((calc2(r)-calc2(l-1))%mod+mod)%mod;
ans=((ans-tmp1+tmp2-tmp3)%mod+mod)%mod;
}
printf("%lld",ans);
return 0;
}

luoguP2260 [清华集训2012]模积和的更多相关文章

  1. P2260 [清华集训2012]模积和

    P2260 [清华集训2012]模积和 整除分块+逆元 详细题解移步P2260题解板块 式子可以拆开分别求解,具体见题解 这里主要讲的是整除分块(数论分块)和mod不为素数时如何求逆元 整除分块:求Σ ...

  2. P2260 [清华集训2012]模积和 【整除分块】

    一.题目 P2260 [清华集训2012]模积和 二.分析 参考文章:click here 具体的公式推导可以看参考文章.博主的证明很详细. 自己在写的时候问题不在公式推导,公式还是能够比较顺利的推导 ...

  3. 洛谷 P2260 [清华集训2012]模积和 || bzoj2956

    https://www.lydsy.com/JudgeOnline/problem.php?id=2956 https://www.luogu.org/problemnew/show/P2260 暴力 ...

  4. 洛谷P2260 [清华集训2012]模积和(容斥+数论分块)

    题意 https://www.luogu.com.cn/problem/P2260 思路 具体思路见下图: 注意这个模数不是质数,不能用快速幂来求逆元,要用扩展gcd. 代码 #include< ...

  5. BSOJ 4062 -- 【清华集训2012】串珠子

    Description 铭铭有n个十分漂亮的珠子和若干根颜色不同的绳子.现在铭铭想用绳子把所有的珠子连接成一个整体. 现在已知所有珠子互不相同,用整数1到n编号.对于第i个珠子和第j个珠子,可以选择不 ...

  6. Luogu P4247 [清华集训2012]序列操作

    题意 给定一个长度为 \(n\) 的序列 \(a\) 和 \(q\) 次操作,每次操作形如以下三种: I a b c,表示将 \([a,b]\) 内的元素加 \(c\). R a b,表示将 \([a ...

  7. UOJ 275. 【清华集训2016】组合数问题

    UOJ 275. [清华集训2016]组合数问题 组合数 $C_n^m $表示的是从 \(n\) 个物品中选出 \(m\) 个物品的方案数.举个例子,从$ (1,2,3)(1,2,3)$ 三个物品中选 ...

  8. Loj #2331. 「清华集训 2017」某位歌姬的故事

    Loj #2331. 「清华集训 2017」某位歌姬的故事 IA 是一名会唱歌的女孩子. IOI2018 就要来了,IA 决定给参赛选手们写一首歌,以表达美好的祝愿.这首歌一共有 \(n\) 个音符, ...

  9. Loj 2320.「清华集训 2017」生成树计数

    Loj 2320.「清华集训 2017」生成树计数 题目描述 在一个 \(s\) 个点的图中,存在 \(s-n\) 条边,使图中形成了 \(n\) 个连通块,第 \(i\) 个连通块中有 \(a_i\ ...

随机推荐

  1. A1101 Quick Sort (25 分)

    一.技术总结 这里的一个关键就是理解调换位置排序是时,如果是元主,那么它要确保的条件就只有两个一个是,自己的位置不变,还有就是前面的元素不能有比自己大的. 二.参考代码 #include<ios ...

  2. 认识一下transition

    transition 以前的CSS属性切换时,由于只有开始和截止两个状态,切换时略显生硬 jquery.animate 传说中的jquery在保证兼容性之后,又为开发者提供了简洁的过渡(动画其中之一效 ...

  3. ideal 切换git和svn

    原文地址:https://blog.csdn.net/lixld/article/details/98851427 intellij ideal gi和svn切换: 之前项目是svn的,新的项目用了g ...

  4. RestTemplate的三种请求方式

    转载 https://blog.csdn.net/qq_36364521/article/details/84203133

  5. HBuilder webApp开发(七)微信/QQ/新浪/腾讯微博分享

    链接 https://blog.csdn.net/zhuming3834/article/details/51706256

  6. 使用 jQuery.TypeAhead 让文本框自动完成 (二)(访问远程数据)

    项目地址:https://github.com/twitter/typeahead.js 直接贴代码了: @section headSection { <script type="te ...

  7. git 创建标签 tag

    1. git tag <name>就可以打一个新标签 加上-a参数来创建一个带备注的tag,备注信息由-m指定.如果你未传入-m则创建过程系统会自动为你打开编辑器让你填写备注信息. git ...

  8. 【题解】Typesetting [Hdu6107]

    [题解]Typesetting [Hdu6107] 传送门:\(\text{Typesetting}\) \(\text{[Hdu6107]}\) [题目描述] 有一篇行数无限宽度 \(MaxW\) ...

  9. 『月之谜 数位dp』

    月之谜 Description 打败了Lord lsp 之后,由 于lqr 是一个心地善良的女孩 子,她想净化Lord lsp 黑化的 心,使他变回到原来那个天然 呆的lsp--在倒霉的光之英 雄ap ...

  10. 基于Spark的电影推荐系统(推荐系统~4)

    第四部分-推荐系统-模型训练 本模块基于第3节 数据加工得到的训练集和测试集数据 做模型训练,最后得到一系列的模型,进而做 预测. 训练多个模型,取其中最好,即取RMSE(均方根误差)值最小的模型 说 ...