Andrew Ng机器学习课程9-补充
Andrew Ng机器学习课程9-补充
首先要说的还是这个bias-variance trade off,一个hypothesis的generalization error是指的它在样本上的期望误差,这个样本不一定是在training set中的。所以出现了两部分的误差,bias是指的是偏差,未能捕获由数据展示出的结构,underfit,large bias。variance指的是把碰巧出现在训练集数据的pattern给捕获了,但是有限的训练样本并不能反映wider pattern of the relationship between x and y,overfitting,large variance。
PAC(probably approximately correct)理论中几个非常重要的assumptions:assumption of training and testing on the same distribution、assumption of the independently drawn training examples。如果没有这些假设,就无法从理论上证明machine can learn。PAC的含义就是with high probability (the “probably” part), the selected function will have low generalization error (the “approximately correct” part)。
如何选择参数呢?一种方法是最小化训练误差(training error or empirical risk),称之为empirical risk minimization(ERM)。
剩下就是如何在training error和generalization error之间建立连接,能不能给一个upper-bound?
后面通过了hoeffding inquality,得到了这个upper bound,包含三个感兴趣的变量:训练样本数量,训练误差与泛化误差之间设定的距离,以及error的概率,可以通过固定两个变量来bound另一个。可以得到训练样本数量的下限,可以叫做sample complexity。
最后得到一个如下的公式:
这是给出了在一个含有k个hypothesis的set H中,学习算法通过empirical risk minimization给出的h^的泛化误差的upper bound,这个upper bound似乎有两个部分,前面的部分说明的是模型的bias,偏差,即如果找到的hypothesis set中hypothesis个数k比较少,则该项也就比较大,而后一项代表的是variance,则比较大,对应为underfitting,总的来讲也会导致generalization error变大;另一方面,如何k越大,对应的前面的项bias就能做的比较好,而后面的项variance则比较大,对应overfitting。可以这样进行理解bias-variance trade-off.
2015-9-11 艺少
Andrew Ng机器学习课程9-补充的更多相关文章
- Andrew Ng机器学习课程10补充
Andrew Ng机器学习课程10补充 VC dimension 讲到了如果通过最小化训练误差,使用一个具有d个参数的hypothesis class进行学习,为了学习好,一般需要参数d的线性关系个训 ...
- Andrew Ng机器学习课程13
Andrew Ng机器学习课程13 声明:引用请注明出处http://blog.csdn.net/lg1259156776/ 引言:主要从一般的角度介绍EM算法及其思想,并推导了EM算法的收敛性.最后 ...
- Andrew Ng机器学习课程12
Andrew Ng机器学习课程12 声明:引用请注明出处http://blog.csdn.net/lg1259156776/ 引言:主要讲述了batch learning和online learnin ...
- Andrew Ng机器学习课程笔记(五)之应用机器学习的建议
Andrew Ng机器学习课程笔记(五)之 应用机器学习的建议 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7368472.h ...
- Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归)
title: Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归) tags: 机器学习, 学习笔记 grammar_cjkRuby: true --- 之前看过一遍,但是总是模 ...
- Andrew Ng机器学习课程笔记--汇总
笔记总结,各章节主要内容已总结在标题之中 Andrew Ng机器学习课程笔记–week1(机器学习简介&线性回归模型) Andrew Ng机器学习课程笔记--week2(多元线性回归& ...
- Andrew Ng机器学习课程笔记(六)之 机器学习系统的设计
Andrew Ng机器学习课程笔记(六)之 机器学习系统的设计 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7392408.h ...
- Andrew Ng机器学习课程笔记(四)之神经网络
Andrew Ng机器学习课程笔记(四)之神经网络 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365730.html 前言 ...
- Andrew Ng机器学习课程笔记(三)之正则化
Andrew Ng机器学习课程笔记(三)之正则化 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365475.html 前言 ...
- Andrew Ng机器学习课程笔记(二)之逻辑回归
Andrew Ng机器学习课程笔记(二)之逻辑回归 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7364636.html 前言 ...
随机推荐
- uic
uic user interface complieruic mainwindow.ui >> ui_mainwidow.h
- 数组splay ------ luogu P3369 【模板】普通平衡树(Treap/SBT)
二次联通门 : luogu P3369 [模板]普通平衡树(Treap/SBT) #include <cstdio> #define Max 100005 #define Inline _ ...
- 原创:C++实现的可排序的双向链表
学习C++有一周了,今天用C++设计了一个双向链表,这个链表有排序功能,默认按升序排列,接受的参数可以是数字,也可以是字符串.现在把自己写的代码,分享出来.如果链表中接受的对象为Lexeme,可以用于 ...
- ICEM-轴
https://yunpan.cn/cuy98EwwXvYkb 访问密码 0897
- PostgreSQL学习笔记(九) 用户、角色、权限管理
PostgreSQL是一个多用户数据库,可以为不同用户指定允许的权限. 角色PostgreSQL使用角色的概念管理数据库访问权限. 根据角色自身的设置不同,一个角色可以看做是一个数据库用户,或者一组数 ...
- Oracle中的统计信息
一.什么是统计信息 统计信息主要是描述数据库中表,索引的大小,规模,数据分布状况等的一类信息.例如,表的行数,块数,平均每行的大小,索引的leaf blocks,索引字段的行数,不同值的大小等,都属于 ...
- Diamond types are not supported at language level '5‘
当时,我问了下大神,他们问我是不是jdk问题.因为jdk8才支持这样的棱形写法.当时自己的jdk版本是jdk8,然后就奇怪了,最后我发现原来在Language level中调成了5.0 5.0不支持6 ...
- OpenJudge计算概论-奇偶排序
/*==============================================总时间限制: 1000ms 内存限制: 65536kB描述 输入十个整数,将十个整数按升序排列输出,并且 ...
- AWS Fargate
AWS Lambda都是浮云,AWS Fargate才是王道——无服务器的未来,有我没你! - DockOne.iohttp://www.dockone.io/article/4656 通过 Farg ...
- Docs-.NET-C#-指南-语言参考-关键字-值类型:enum
ylbtech-Docs-.NET-C#-指南-语言参考-关键字-值类型:enum 1.返回顶部 1. enum(C# 参考) 2015/07/20 enum 关键字用于声明枚举,一种包含一组被称为枚 ...