题目链接

Problem Description
There are n houses in the village and some bidirectional roads connecting them. Every day peole always like to ask like this "How far is it if I want to go from house A to house B"? Usually it hard to answer. But luckily int this village the answer is always unique, since the roads are built in the way that there is a unique simple path("simple" means you can't visit a place twice) between every two houses. Yout task is to answer all these curious people.
 
Input
First line is a single integer T(T<=10), indicating the number of test cases.
  For each test case,in the first line there are two numbers n(2<=n<=40000) and m (1<=m<=200),the number of houses and the number of queries. The following n-1 lines each consisting three numbers i,j,k, separated by a single space, meaning that there is a road connecting house i and house j,with length k(0<k<=40000).The houses are labeled from 1 to n.
  Next m lines each has distinct integers i and j, you are to answer the distance between house i and house j.
 
Output
For each test case,output m lines. Each line represents the answer of the query. Output a bland line after each test case.
 
Sample Input
2
3 2
1 2 10
3 1 15
1 2
2 3
 
 
2 2
1 2 100
1 2
2 1
 
Sample Output
10
25
100
100

题意:有一棵有n个节点的树,每条边上有一个权值代表这两个点之间的距离,现在m次询问:从节点a到节点b的路径长?

思路:预处理所有节点到根节点(定为节点1)的距离,以及所有节点的祖先信息(fa[i][j]表示节点 i 向上距离为 (1<<j)的祖先节点编号),计算a和b到根节点的距离和,减去两倍的最近公共祖先的到根节点的距离值。

代码如下:

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
using namespace std;
const int N = 4e4 + ; int head[N], cnt;
struct Edge
{
int to, next;
int value;
}e[ * N]; struct Node {
int fa[];
int deep;
int sum;
bool state;
}node[N]; void insert(int u, int v, int value)
{
e[++cnt].to = v;
e[cnt].next = head[u];
e[cnt].value = value;
head[u] = cnt;
e[++cnt].to = u;
e[cnt].next = head[v];
e[cnt].value = value;
head[v] = cnt;
}
int cal(int x, int t)
{
for (int i = ; i <= ; i++)
if (t&( << i)) x = node[x].fa[i];
return x;
}
void dfs(int x)
{
node[x].state = ;
for (int i = ; i <= ; i++)
{
if (node[x].deep<( << i))break;
node[x].fa[i] = node[node[x].fa[i - ]].fa[i-];///倍增处理祖先信息
}
for (int i = head[x]; i; i = e[i].next)
{
if (node[e[i].to].state) continue;
node[e[i].to].deep = node[x].deep+ ;
node[e[i].to].fa[] = x;
node[e[i].to].sum = node[x].sum+e[i].value;
dfs(e[i].to);
}
}
int lca(int x, int y)///求lca
{
if (node[x].deep<node[y].deep) swap(x, y);
x = cal(x, node[x].deep - node[y].deep);
for (int i = ; i >= ; i--)
if (node[x].fa[i] != node[y].fa[i])
{
x = node[x].fa[i];
y = node[y].fa[i];
}
if (x == y)return x;
else return node[x].fa[];
} void init()
{
cnt = ;
memset(head, , sizeof(head));
memset(node, , sizeof(node));
} int main()
{
int T; cin >> T;
while (T--)
{
init();
int n, m; cin >> n >> m;
for (int i = ; i < n-; i++) {
int x, y, v; scanf("%d%d%d",&x,&y,&v);
insert(x,y,v);
}
dfs();
for (int i = ; i < m; i++) {
int x, y; scanf("%d%d",&x,&y);
int pa = lca(x, y);
int ans = node[x].sum - node[pa].sum + node[y].sum - node[pa].sum;
cout << ans << endl;
}
}
return ;
}

LCA最近公共祖先-- HDU 2586的更多相关文章

  1. lca 最近公共祖先

    http://poj.org/problem?id=1330 #include<cstdio> #include<cstring> #include<algorithm& ...

  2. Tarjan算法应用 (割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)问题)(转载)

    Tarjan算法应用 (割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)问题)(转载) 转载自:http://hi.baidu.com/lydrainbowcat/blog/item/2 ...

  3. LCA(最近公共祖先)模板

    Tarjan版本 /* gyt Live up to every day */ #pragma comment(linker,"/STACK:1024000000,1024000000&qu ...

  4. CodeVs.1036 商务旅行 ( LCA 最近公共祖先 )

    CodeVs.1036 商务旅行 ( LCA 最近公共祖先 ) 题意分析 某首都城市的商人要经常到各城镇去做生意,他们按自己的路线去做,目的是为了更好的节约时间. 假设有N个城镇,首都编号为1,商人从 ...

  5. LCA近期公共祖先

    LCA近期公共祖先 该分析转之:http://kmplayer.iteye.com/blog/604518 1,并查集+dfs 对整个树进行深度优先遍历.并在遍历的过程中不断地把一些眼下可能查询到的而 ...

  6. LCA 近期公共祖先 小结

    LCA 近期公共祖先 小结 以poj 1330为例.对LCA的3种经常使用的算法进行介绍,分别为 1. 离线tarjan 2. 基于倍增法的LCA 3. 基于RMQ的LCA 1. 离线tarjan / ...

  7. HDU 4547 CD操作 (LCA最近公共祖先Tarjan模版)

    CD操作 倍增法  https://i.cnblogs.com/EditPosts.aspx?postid=8605845 Time Limit : 10000/5000ms (Java/Other) ...

  8. D5 LCA 最近公共祖先

    第一题: POJ 1330 Nearest Common Ancestors POJ 1330 这个题可不是以1为根节点,不看题就会一直wa呀: 加一个找根节点的措施: #include<alg ...

  9. LCA 最近公共祖先 Tarjan(离线)算法的基本思路及其算法实现

    首先是最近公共祖先的概念(什么是最近公共祖先?): 在一棵没有环的树上,每个节点肯定有其父亲节点和祖先节点,而最近公共祖先,就是两个节点在这棵树上深度最大的公共的祖先节点. 换句话说,就是两个点在这棵 ...

随机推荐

  1. PyCharm2019.3专业版激活

    1. 首先到官网下载Professional(专业版),链接地址: https://www.jetbrains.com/pycharm/download/ 具体安装方法这里就不赘述 2. 下载补丁je ...

  2. 面向对象程序设计(JAVA) 第8周学习指导及要求

    2019面向对象程序设计(Java)第8周学习指导及要求 (2019.10.18-2019.10.21)  学习目标 掌握接口定义方法: 掌握实现接口类的定义要求: 掌握实现了接口类的使用要求: 理解 ...

  3. opencv 截取任意四边形区域的图像

    截取任意四边形区域的图像. mask就是结果. 需要定义四边形区域,分别是 tl, tr, bl, br std::map<int, std::set<int>> genera ...

  4. 【Eureka篇三】Eureka服务注册(2)

    注:修改[Rest微服务案例(二)]中的子模块microservicecloud-provider-dept-8001. 一.项目改造 1. 修改pom.xml 添加eureka client的依赖 ...

  5. LeetCode 739 每日温度

    1.直接遍历 暴力求解 class Solution { public: vector<int>dailyTemperatures(vector<int>& T) { ...

  6. 开源规则引擎 drools

    java语言开发的开源业务规则引擎 DROOLS(JBOSS RULES )具有一个易于访问企业策略.易于调整以及易于管理的开源业务规则引擎,符合业内标准,速度快.效率高.业务分析师或审核人员可以利用 ...

  7. 零基础入门 实战mpvue2.0多端小程序框架

    第1章 课程快速预览(必看!!!)在这一章节中,老师讲带领你快速预览课程整体.其中,涉及到为什么要做这么一门实战课程.制作一个小程序的完整流程是怎么样的,以及如何做项目的技术选型. 第2章 30 分钟 ...

  8. MySQL实战45讲学习笔记:第三十九讲

    一.本节概况 MySQL实战45讲学习笔记:自增主键为什么不是连续的?(第39讲) 在第 4 篇文章中,我们提到过自增主键,由于自增主键可以让主键索引尽量地保持递增顺序插入,避免了页分裂,因此索引更紧 ...

  9. Paper | U-Net: Convolutional Networks for Biomedical Image Segmentation

    目录 故事背景 U-Net 具体结构 损失 数据扩充 发表在2015 MICCAI.原本是一篇医学图像分割的论文,但由于U-Net杰出的网络设计,得到了8k+的引用. 摘要 There is larg ...

  10. Vue router-link路由不同的写法,不一样的效果

    我想要的路径:http://localhost:8080/#/main/hato/realtime/eventDetail/238 情况一:未进行路由配置:  {      path: 'eventD ...