Running Median
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 3406   Accepted: 1576

Description

For this problem, you will write a program that reads in a sequence of 32-bit signed integers. After each odd-indexed value is read, output the median (middle value) of the elements received so far.

Input

The first line of input contains a single integer P, (1 ≤ P ≤ 1000), which is the number of data sets that follow. The first line of each data set contains the data set number, followed by a space, followed by an odd decimal integer M, (1 ≤ M ≤ 9999), giving the total number of signed integers to be processed. The remaining line(s) in the dataset consists of the values, 10 per line, separated by a single space. The last line in the dataset may contain less than 10 values.

Output

For each data set the first line of output contains the data set number, a single space and the number of medians output (which should be one-half the number of input values plus one). The output medians will be on the following lines, 10 per line separated by a single space. The last line may have less than 10 elements, but at least 1 element. There should be no blank lines in the output.

Sample Input

3
1 9
1 2 3 4 5 6 7 8 9
2 9
9 8 7 6 5 4 3 2 1
3 23
23 41 13 22 -3 24 -31 -11 -8 -7
3 5 103 211 -311 -45 -67 -73 -81 -99
-33 24 56

Sample Output

1 5
1 2 3 4 5
2 5
9 8 7 6 5
3 12
23 23 22 22 13 3 5 5 3 -3
-7 -3
解析:
动态维护中位数
方法:
建立两个二叉堆:一个小根堆,一个大根堆。在依次读入这个整数序列的过程中,设当前序列长度为M,我们始终保持:
1、序列中从小到大排名为1~M/2的整数存储在大根堆中:
2、序列中从小到大排名为M/2+1~M的整数存储在小根堆中。
任何时候,如果某一个堆中的元素过多,打破了这个性质,就取出该堆的堆顶插入另一个堆。这样一来,序列的中位数就是小根堆的堆顶。
每次新读入一个数值X后,若X比中位数小,则插入大根堆,否则插入小根堆,在插入之后检查并维护上述性质即可。这就是“对顶堆”算法。
(本题对格式要求严格)
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<queue>
using namespace std;
int T,n,m,a[]; priority_queue<int,vector<int>, greater<int> > q;//从小到大输出:小顶堆 priority_queue<int> p;//从大到小输出 :大顶堆 int main()
{
scanf("%d",&T);
while(T--)
{
while(!q.empty())q.pop();
while(!p.empty())p.pop();
scanf("%d%d",&m,&n);
printf("%d %d\n",m,(n+)/);
for(int i=;i<=n;i++) scanf("%d",&a[i]);
q.push(a[]);
printf("%d",a[]);
int cnt=;
for(int i=;i<=n;i++)
{
if(a[i]>q.top()) q.push(a[i]);
else p.push(a[i]);
if(i%!=){
while(p.size()>(i/))
{
q.push(p.top());
p.pop();
}
while(q.size()>(i-(i/)))
{
p.push(q.top());
q.pop();
}
cnt++;
if(cnt%==) printf("\n%d",q.top());
else printf(" %d",q.top());
}
}
puts("");//换行坑人......
}
}

【POJ3784】Running Median的更多相关文章

  1. 【POJ 3784】 Running Median (对顶堆)

    Running Median Description For this problem, you will write a program that reads in a sequence of 32 ...

  2. 【POJ 3784】 Running Median

    [题目链接] http://poj.org/problem?id=3784 [算法] 对顶堆算法 要求动态维护中位数,我们可以将1-M/2(向下取整)小的数放在大根堆中,M/2+1-M小的数放在小根堆 ...

  3. 【LeetCode】4. Median of Two Sorted Arrays(思维)

    [题意] 给两个有序数组,寻找两个数组组成后的中位数,要求时间复杂度为O(log(n+m)). [题解] 感觉这道题想法非常妙!! 假定原数组为a,b,数组长度为lena,lenb. 那么中位数一定是 ...

  4. 【PAT】1029. Median (25)

    Given an increasing sequence S of N integers, the median is the number at the middle position. For e ...

  5. 【leetcode】4. Median of Two Sorted Arrays

    题目描述: There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of t ...

  6. 【LeeetCode】4. Median of Two Sorted Arrays

    There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two ...

  7. 【medium】4. Median of Two Sorted Arrays 两个有序数组中第k小的数

    There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two ...

  8. 【AtCoder】【DP】【思维】Prefix Median(AGC012)

    模的是这位神犇的代码:Atcoder AGC012F : Prefix Median 题意: 在动态中位数那道题上做了一些改动.给你一个序列a,可以将a重新任意排序,然后对于a序列构造出b序列. 假设 ...

  9. 【LeetCode】4. Median of Two Sorted Arrays (2 solutions)

    Median of Two Sorted Arrays There are two sorted arrays A and B of size m and n respectively. Find t ...

随机推荐

  1. 巡风视图函数源码学习--view.py

    记录一下巡风扫描器view.py这个脚本里的视图函数的学习,直接在代码里面做的注释,里面有一些print 代码是为了把数据打印出来小白我自己加的,勿怪勿怪.可能存在一些理解错误和不到位的地方,希望大佬 ...

  2. Misc-不简单的压缩包

    题目下载地址 https://ctf.bugku.com/files/e5a937a3985f5264a723bcbd0e062b0f/zip 友情连接同时也是网上看到的第一份关于这题的writeup ...

  3. python安装包及批量更新包

    python安装包 # pip安装 pip install pyecharts # 源码安装 - linux git clone https://github.com/pyecharts/pyecha ...

  4. UVA11464 Even Parity 搜索+递推

    问题描述 UVA11464 题解 第一直觉爆搜. 发现 \(N \le 15\) ,然后后面每行都可以通过第一行递推出来. 爆搜第一行,递推后面+check \(\mathrm{Code}\) #in ...

  5. ORA-12638:身份证明检索失败的解决方法

    找到安装目录:E:\Oracle\product\11.2.0\dbhome_1\NETWORK\ADMIN 打开 sqlnet.ora 找到SQLNET.AUTHENTICATION_SERVICE ...

  6. MySQL实战45讲学习笔记:第四十讲

    一.本节概述 在上一篇文章中,我提到 MySQL 对自增主键锁做了优化,尽量在申请到自增 id 以后,就释放自增锁. 因此,insert 语句是一个很轻量的操作.不过,这个结论对于“普通的 inser ...

  7. .NET Core 中间件之压缩、缓存

    前言 今天给大家介绍一下在 ASP.NET Core 日常开发中用的比较多的两个中间件,它们都是出自于微软的 ASP.NET 团队,他们分别是Microsoft.AspNetCore.Response ...

  8. k8s 二进制部署详解

    环境说明: 192.168.1.101 -- master01 + etcd01 192.168.1.102 -- etcd02 192.168.1.103 -- etcd03 192.168.1.1 ...

  9. HTML连载24-属性选择器(下)

    一.格式 标签[属性=值]:{属性:值:} 1.属性的取值是以什么开头的 attribute |= value(CSS2) attribute^=value(CSS3) 两者之间的区别:CSS2中只能 ...

  10. [MFC]_在vs2019中使用MFC快速构建简单windows窗口程序

    微软基础类库(英语: Classes,简称MFC)是微软公司提供的一个类库(class libraries),以C++类的形式封装了Windows API,并且包含一个应用程序框架,以减少应用程序开发 ...