【C】题解 (五校联考3day2)
分析
这道题看上去很恶心,实际上只用记录四坨东西就能打DP了:y坐标最小的向上射的点、y坐标最大的向下射的点、y坐标最大和最小的向右射的点,转移显然。注意,如果该状态的值为零就可以略过,否则会超时。
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
int a[60][3],f[2][57][57][57][57],xz[55],xy[55],ys[55],yx[55];
int n,m,tot;
void q(int l,int r)
{
int i=l,j=r,mid=a[(l+r)/2][1],e;
while(i<j)
{
while(a[i][1]<mid) i++;
while(a[j][1]>mid) j--;
if(i<=j)
{
e=a[i][1];
a[i][1]=a[j][1];
a[j][1]=e;
e=a[i][2];
a[i][2]=a[j][2];
a[j][2]=e;
i++;
j--;
}
}
if(i<r) q(i,r);
if(l<j) q(l,j);
}
void q1(int l,int r)
{
int i=l,j=r,mid=a[(l+r)/2][2],e;
while(i<j)
{
while(a[i][2]<mid) i++;
while(a[j][2]>mid) j--;
if(i<=j)
{
e=a[i][1];
a[i][1]=a[j][1];
a[j][1]=e;
e=a[i][2];
a[i][2]=a[j][2];
a[j][2]=e;
i++;
j--;
}
}
if(i<r) q1(i,r);
if(l<j) q1(l,j);
}
int main()
{
cin>>n;
int i,j,k,l,p,x,y;
for(i=1;i<=n;i++)
{
cin>>a[i][1]>>a[i][2];
xz[i]=xy[i]=ys[i]=yx[i]=56;
}
xz[0]=xy[0]=ys[0]=yx[0]=56;
q1(1,n);
tot=0;
p=-2000000000;
for(i=1;i<=n;i++)
{
if(a[i][2]==p)
{
a[i][2]=tot;
}
else
{
p=a[i][2];
a[i][2]=++tot;
}
}
q(1,n);
tot=0;
p=-2000000000;
for(i=1;i<=n;i++)
{
if(a[i][1]==p)
{
a[i][1]=tot;
}
else
{
p=a[i][1];
a[i][1]=++tot;
}
if(xz[a[i][2]]==56)
xz[a[i][2]]=a[i][1];
else
xz[a[i][2]]=min(xz[a[i][2]],a[i][1]);
if(xy[a[i][2]]==56)
xy[a[i][2]]=a[i][1];
else
xy[a[i][2]]=max(xy[a[i][2]],a[i][1]);
if(yx[a[i][1]]==56)
yx[a[i][1]]=a[i][2];
else
yx[a[i][1]]=min(yx[a[i][1]],a[i][2]);
if(ys[a[i][1]]==56)
ys[a[i][1]]=a[i][2];
else
ys[a[i][1]]=max(ys[a[i][1]],a[i][2]);
}
int mo=998244353;
f[0][n+1][0][0][n+1]=1;
int ans=0;
for(i=0;i<=n;i++)
{
memset(f[(i+1)%2],0,sizeof(f[(i+1)%2]));
for(int up=0;up<=n+1;up++)
for(int down=0;down<=n+1;down++)
for(int mx=0;mx<=n+1;mx++)
for(int mn=0;mn<=n+1;mn++)
if(f[i%2][up][down][mx][mn])
{
int sum=0;
int t=f[i%2][up][down][mx][mn];
//上
if(a[i+1][2]==ys[a[i+1][1]] && mx<a[i+1][2])
(f[(i+1)%2][min(up,a[i+1][2])][down][mx][mn]+=t)%=mo,(sum+=t)%=mo;
//下
if(a[i+1][2]==yx[a[i+1][1]] && mn>a[i+1][2])
(f[(i+1)%2][up][max(down,a[i+1][2])][mx][mn]+=t)%=mo,(sum+=t)%=mo;
//左
if(a[i+1][1]==xz[a[i+1][2]] && up>a[i+1][2] && down<a[i+1][2])
(f[(i+1)%2][up][down][mx][mn]+=t)%=mo,(sum+=t)%=mo;
//右
if(a[i+1][1]==xy[a[i+1][2]])
(f[(i+1)%2][up][down][max(mx,a[i+1][2])][min(mn,a[i+1][2])]+=t)%=mo,(sum+=t)%=mo;
if(i==n-1) ans=(ans+sum)%mo;
}
}
cout<<ans;
}
【C】题解 (五校联考3day2)的更多相关文章
- 【五校联考3day2】C
題意: 現有一平面直角坐標系,有n個點,每一個點必須向某一個方向發射射線,且任意一條射線必須與某一條坐標軸平行.定義一種發射射線的方案是合法的,則方案必須滿足: 1.沒有一條射線交叉 2.沒有一條射線 ...
- 【五校联考1day2】JZOJ2020年8月12日提高组T2 我想大声告诉你
[五校联考1day2]JZOJ2020年8月12日提高组T2 我想大声告诉你 题目 Description 因为小Y 是知名的白富美,所以自然也有很多的追求者,这一天这些追求者打算进行一次游戏来踢出一 ...
- 【五校联考1day2】JZOJ2020年8月12日提高组T1 对你的爱深不见底
[五校联考1day2]JZOJ2020年8月12日提高组T1 对你的爱深不见底 题目 Description 出乎意料的是,幸运E 的小R 居然赢了那个游戏.现在欣喜万分的小R 想要写一张明信片给小Y ...
- 【宝藏】题解(五校联考3day1)
分析 如果打爆搜的话可以拿60分. 首先知道期望是可以累加的,即i通过j去到k的期望,等于i去到j的期望加j去到k的期望. 所以令d[i]表示i的出度,F[i]表示从i到i的父亲的期望,G[i]表示i ...
- NOIP2016提高A组五校联考3总结
第一题,本来一开始就想到了数位dp,结果脑残地打了十几个转移方程,总是调试不出来,一气之下放弃了. 调第一题几乎调了整节比赛,第二第三都没它. 第二题连边找联通块. 第三题题解都打了三页,看都不想看. ...
- 【五校联考5day1】登山
题目 描述 题目大意 给你一个n∗nn*nn∗n的网格图.从(0,0)(0,0)(0,0)开始,每次只可以向右或向上移动一格,并且不能越过对角线(即不能为x<yx<yx<y). 网格 ...
- 【2020五校联考NOIP #2】矩阵
咕咕咕到现在~ 题面传送门 题意: 给出一个 \(n\times n\) 的矩阵 \(A\).要你求有多少个 \(n\times n\) 的矩阵 \(B\) 满足: 每一行都是 \(1\) 到 \(n ...
- 五校联考 running (欧拉函数)
题面 \(solution:\) 讲真吧,这道题真的出得,嗯,太恐怖了.考场上这道题真的把我看懵了,这道题以前是见过的,但欧拉函数?我学过吗?一道容斥都要超时的题目,我都要为我自己点根香了,拿着gcd ...
- 五校联考R1 Day1T3 平面图planar(递推 矩阵快速幂)
题目链接 我们可以把棱柱拆成有\(n\)条高的矩形,尝试递推. 在计算的过程中,第\(i\)列(\(i\neq n\))只与\(i-1\)列有关,称\(i-1\)列的上面/下面为左上/左下,第\(i\ ...
随机推荐
- Eureka服务注册与发现-提供消费服务模型
1.工具及软件版本 JDK1.8 Spring Boot 1.4.3.RELEASE <parent> <groupId>org.springframework.boot< ...
- 自建 CA 中心并签发 CA 证书
目录 文章目录 目录 CA 认证原理浅析 基本概念 PKI CA 认证中心(证书签发) X.509 标准 证书 证书的签发过程 自建 CA 签发证书并认证 HTTPS 网站的过程 使用 OpenSSL ...
- IDEA maven 阿里云镜像 下载jar失败
我在使用IDEA搭建SpringCloud项目的时候,发现很多spring cloud 包总是下载不了.maven配置了阿里云镜像.在换了一下新版的镜像地址以后就可以下包了. 官方答疑:新版maven ...
- 彻底理解RSA算法原理
1. 什么是RSA RSA算法是现今使用最广泛的公钥密码算法,也是号称地球上最安全的加密算法.在了解RSA算法之前,先熟悉下几个术语 根据密钥的使用方法,可以将密码分为对称密码和公钥密码 对称密码:加 ...
- 【Qt开发】状态栏设置
1.在Qt 里面,状态栏显示的信息有三种类型:临时信息.一般信息和永久信息. 其中,临时信息指临时显示的信息,比如QAction 的提示等,也可以设置自己的 临时信息,比如程序启动之后显示Read ...
- 20191110 Spring Boot官方文档学习(3)
3.使用Spring Boot 3.1.构建系统 建议选择Maven或Gradle作为构建工具 每个Spring Boot版本都提供了它所支持的依赖关系的精选列表.实际上,您不需要为构建配置中的所有这 ...
- Double类型的数值 在写入excel时 如何去掉 科学计算法的 后面数值+ E的 情况
Double start = 20190724100000.000; 写入excel时 是 201907E+13 但想要输出的是 20190724100000 这种格式 Java在java.math包 ...
- [JS] 鼠标点击文本框清空默认值,离开文本框恢复默认值
在使用文本框的时候,若设定了初始值,选择文本框进行输入的时候要将本来的内容进行删除,会显得非常麻烦 可以在文本框属性定义触发onfocus和onblur两个事件时对应的js功能 下面以asp.net代 ...
- linux应用程序启动时加载库错误问题
ldd text查看依赖库 ln -s /lib64/libpcre.so.0 /usr/local/lib/libpcre.so做软连接
- kubernetes快速应用入门
kubectl 就是 api server的客户端工具 创建一个nginx的pod [root@master ~]# kubectl run nginx-deploy --image=nginx:1. ...