昨晚终于实现了Tensorflow模型的部署 使用TensorFlow Serving

1、使用Docker 获取Tensorflow Serving的镜像,Docker在国内的需要将镜像的Repository地址设置为阿里云的加速地址,这个大家可以自己去CSDN上面找

然后启动docker

2、使用Tensorflow 的 SaveModelBuilder保存Tensorflow的计算图模型,并且设置Signature,

Signature主要用来标识模型的输入值的名称和类型

        builder = saved_model_builder.SavedModelBuilder(export_path)

        classification_inputs = utils.build_tensor_info(cnn.input_x)
classification_dropout_keep_prob = utils.build_tensor_info(cnn.dropout_keep_prob)
classification_outputs_classes = utils.build_tensor_info(prediction_classes)
classification_outputs_scores = utils.build_tensor_info(cnn.scores) classification_signature = signature_def_utils.build_signature_def(
inputs={signature_constants.CLASSIFY_INPUTS: classification_inputs,
signature_constants.CLASSIFY_INPUTS:classification_dropout_keep_prob
},
outputs={
signature_constants.CLASSIFY_OUTPUT_CLASSES:
classification_outputs_classes,
signature_constants.CLASSIFY_OUTPUT_SCORES:
classification_outputs_scores
},
method_name=signature_constants.CLASSIFY_METHOD_NAME) tensor_info_x = utils.build_tensor_info(cnn.input_x)
tensor_info_y = utils.build_tensor_info(cnn.predictions)
tensor_info_dropout_keep_prob = utils.build_tensor_info(cnn.dropout_keep_prob) prediction_signature = signature_def_utils.build_signature_def(
inputs={'inputX': tensor_info_x,
'input_dropout_keep_prob':tensor_info_dropout_keep_prob},
outputs={'predictClass': tensor_info_y},
method_name=signature_constants.PREDICT_METHOD_NAME) legacy_init_op = tf.group(tf.tables_initializer(), name='legacy_init_op') #add the sigs to the servable
builder.add_meta_graph_and_variables(
sess, [tag_constants.SERVING],
signature_def_map={
'textclassified':
prediction_signature,
signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
classification_signature,
},
legacy_init_op=legacy_init_op)
#save it!
builder.save(True)

保存之后的计算图的结构可以从下面这里看见,下面这里只给出模型的signature部分,因为signature里面定义了你到时候call restful接口的参数名称和类型

  signature_def {
key: "serving_default"
value {
inputs {
key: "inputs"
value {
name: "dropout_keep_prob:0"
dtype: DT_FLOAT
tensor_shape {
unknown_rank: true
}
}
}
outputs {
key: "classes"
value {
name: "index_to_string_Lookup:0"
dtype: DT_STRING
tensor_shape {
dim {
size: 1
}
}
}
}
outputs {
key: "scores"
value {
name: "output/scores:0"
dtype: DT_FLOAT
tensor_shape {
dim {
size: -1
}
dim {
size: 2
}
}
}
}
method_name: "tensorflow/serving/classify"
}
}
signature_def {
key: "textclassified"
value {
inputs {
key: "inputX"
value {
name: "input_x:0"
dtype: DT_INT32
tensor_shape {
dim {
size: -1
}
dim {
size: 40
}
}
}
}
inputs {
key: "input_dropout_keep_prob"
value {
name: "dropout_keep_prob:0"
dtype: DT_FLOAT
tensor_shape {
unknown_rank: true
}
}
}
outputs {
key: "predictClass"
value {
name: "output/predictions:0"
dtype: DT_INT64
tensor_shape {
dim {
size: -1
}
}
}
}
method_name: "tensorflow/serving/predict"
}
}
}

从上面的Signature定义可以看出 到时候call restfull 接口需要传两个参数,

int32类型的名称为inputX参数

float类型名称为input_drop_out_keep_prob的参数

上面的protocol buffer 中

textclassified表示使用TextCnn卷积神经网络来进行预测,然后预测功能的名称叫做textclassified

3、将模型部署到Tensorflow Serving 上面

首先把模型通过工具传输到docker上面

模型的结构如下

传到docker上面,然后在外边套一个文件夹名字起位模型的名字,叫做

text_classified_model
然后执行下面这条命令运行tensorflow/serving
docker run -p 8500:8500 --mount type=bind,source=/home/docker/model/text_classified_model,target=/mo
dels/text_classified_model -e MODEL_NAME=text_classified_model -t tensorflow/serving
source表示模型在docker上面的路径
target表示模型在docker中TensorFlow/serving container上面的路径

然后输入如下所示

上面显示运行了两个接口一个是REST API 接口,端口是8501

另一个是gRPC接口端口是8500

gRPC是HTTP/2协议,REST API 是HTTP/1协议

区别是gRPC只有POST/GET两种请求方式

REST API还有其余很多种 列如 PUT/DELETE 等

4、客户端调用gPRC接口

需要传两个参数,

一个是

inputX

另一个是

input_dropout_keep_prob
'''
Created on 2018年10月17日 @author: 95890
''' """Send text to tensorflow serving and gets result
""" # This is a placeholder for a Google-internal import. from grpc.beta import implementations
import tensorflow as tf
import data_helpers
from tensorflow_serving.apis import predict_pb2
from tensorflow_serving.apis import prediction_service_pb2
from tensorflow.contrib import learn
import numpy as np tf.flags.DEFINE_string("positive_data_file", "./data/rt-polaritydata/rt-polarity.pos", "Data source for the positive data.")
tf.flags.DEFINE_string("negative_data_file", "./data/rt-polaritydata/rt-polarity.neg", "Data source for the negative data.")
tf.flags.DEFINE_string('server', '192.168.99.100:8500',
'PredictionService host:port')
FLAGS = tf.flags.FLAGS x_text=[]
y=[]
max_document_length=40 def main(_): testStr =["wisegirls is its low-key quality and genuine"] if x_text.__len__()==0:
x_text, y = data_helpers.load_data_and_labels(FLAGS.positive_data_file, FLAGS.negative_data_file)
max_document_length = max([len(x.split(" ")) for x in x_text]) vocab_processor = learn.preprocessing.VocabularyProcessor(max_document_length)
vocab_processor.fit(x_text)
x = np.array(list(vocab_processor.fit_transform(testStr))) host, port = FLAGS.server.split(':')
channel = implementations.insecure_channel(host, int(port))
stub = prediction_service_pb2.beta_create_PredictionService_stub(channel)
request = predict_pb2.PredictRequest()
request.model_spec.name = "text_classified_model"
request.model_spec.signature_name = 'textclassified'
dropout_keep_prob = np.float(1.0) request.inputs['inputX'].CopyFrom(
tf.contrib.util.make_tensor_proto(x, shape=[1,40],dtype=np.int32)) request.inputs['input_dropout_keep_prob'].CopyFrom(
tf.contrib.util.make_tensor_proto(dropout_keep_prob, shape=[1],dtype=np.float)) result = stub.Predict(request, 10.0) # 10 secs timeout
print(result) if __name__ == '__main__':
tf.app.run()

调用的结果如下所示

outputs {
key: "predictClass"
value {
dtype: DT_INT64
tensor_shape {
dim {
size: 1
}
}
int64_val: 1
}
}
model_spec {
name: "text_classified_model"
version {
value: 1
}
signature_name: "textclassified"
}

从上面的结果可以看出,我们传入了一句话

wisegirls is its low-key quality and genuine

分类的结果

predictClass
int64_val: 1

分成第一类

这个真的是神经网络的部署呀。

啦啦啦 ,  Tensorflow真的很牛,上至浏览器,下到手机,一次训练,一次导出。处处运行。

没有不敢想,只有不敢做

The Full version can be find here

https://github.com/weizhenzhao/TextCNN_Tensorflow_Serving/tree/master

Thanks

WeiZhen

139、TensorFlow Serving 实现模型的部署(二) TextCnn文本分类模型的更多相关文章

  1. 使用PyTorch建立你的第一个文本分类模型

    概述 学习如何使用PyTorch执行文本分类 理解解决文本分类时所涉及的要点 学习使用包填充(Pack Padding)特性 介绍 我总是使用最先进的架构来在一些比赛提交模型结果.得益于PyTorch ...

  2. NLP学习(2)----文本分类模型

    实战:https://github.com/jiangxinyang227/NLP-Project 一.简介: 1.传统的文本分类方法:[人工特征工程+浅层分类模型] (1)文本预处理: ①(中文) ...

  3. tensorflow 模型保存与加载 和TensorFlow serving + grpc + docker项目部署

    TensorFlow 模型保存与加载 TensorFlow中总共有两种保存和加载模型的方法.第一种是利用 tf.train.Saver() 来保存,第二种就是利用 SavedModel 来保存模型,接 ...

  4. 深度学习之文本分类模型-前馈神经网络(Feed-Forward Neural Networks)

    目录 DAN(Deep Average Network) Fasttext fasttext文本分类 fasttext的n-gram模型 Doc2vec DAN(Deep Average Networ ...

  5. Caffe、TensorFlow、MXnet三个开源库对比+主流分类模型对比

    库名称 开发语言 支持接口 安装难度(ubuntu) 文档风格 示例 支持模型 上手难易 Caffe c++/cuda c++/python/matlab *** * *** CNN ** MXNet ...

  6. Python自然语言处理笔记【二】文本分类之监督式分类的细节问题

    一.选择正确的特征 1.建立分类器的工作中如何选择相关特征,并且为其编码来表示这些特征是首要问题. 2.特征提取,要避免过拟合或者欠拟合 过拟合,是提供的特征太多,使得算法高度依赖训练数据的特性,而对 ...

  7. CNN 文本分类模型优化经验——关键点:加卷积层和FC可以提高精度,在FC前加BN可以加快收敛,有时候可以提高精度,FC后加dropout,conv_1d的input维度加大可以提高精度,但是到256会出现OOM。

    network = tflearn.input_data(shape=[None, max_len], name='input') network = tflearn.embedding(networ ...

  8. 基于Text-CNN模型的中文文本分类实战 流川枫 发表于AI星球订阅

    Text-CNN 1.文本分类 转眼学生生涯就结束了,在家待就业期间正好有一段空闲期,可以对曾经感兴趣的一些知识点进行总结. 本文介绍NLP中文本分类任务中核心流程进行了系统的介绍,文末给出一个基于T ...

  9. 基于Text-CNN模型的中文文本分类实战

    Text-CNN 1.文本分类 转眼学生生涯就结束了,在家待就业期间正好有一段空闲期,可以对曾经感兴趣的一些知识点进行总结. 本文介绍NLP中文本分类任务中核心流程进行了系统的介绍,文末给出一个基于T ...

随机推荐

  1. check cve

    今天想检查一下 Gitlab 11.9.0 产品受哪些 cve 的影响.其实网上已经有很多网站可以查询产品的相关 cve,但就是粒度比较粗.我想在 cve 列表中筛选出特定的版本,已经特定的版本,比如 ...

  2. php强大的filter过滤用户输入

    <?php $filters = array //定义过滤的数组 ( "name" => array ( "filter"=>FILTER_S ...

  3. php引用 & 详解

    在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 $a = 222; $b = &$a; ...

  4. poj 1543 Perfect Cubes (暴搜)

    Perfect Cubes Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 15302   Accepted: 7936 De ...

  5. web部署命令简单记录

    非 root 用户设置环境变量:在< .bash_profile >中设置 后台运行:nohup dosomething >> log.out & nginx 启动ng ...

  6. boost多线程编译出错

    添加 -lpthread CPLUS_INCLUDE_PATH=$CPLUS_INCLUDE_PATH:/tools/boost/includeexport CPLUS_INCLUDE_PATH LI ...

  7. [uboot] (第一章)uboot流程——概述(转)

    版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/ooonebook/article/det ...

  8. java 集合之ArrayList、Vector、LinkedList、CopyOnWriteArrayList

    ArrayList 线程不安全. 底层Object[]数组实现,用transient关键字修饰,防止序列化,然后重写了readObject和writeObject方法,为了提高传输效率. 插入时会判断 ...

  9. 从输入一个URL到页面渲染的流程简介

    首先说明以下是我参考网上答案和自己的思考,给出自己的想法,如果有问题,欢迎大家吐槽从用户在浏览器中输入一个URL,到整个页面渲染,这个过程中究竟发生了什么呢?今天先简单写下整个过程,后面再一点点完善. ...

  10. HDU-4185-Oil Skimming(最大匹配)

    链接: https://vjudge.net/problem/HDU-4185 题意: Thanks to a certain "green" resources company, ...