题意:

给定一个H行W列的矩阵,在矩阵的格点上放带权值的卡片(一个点上能放多张)。

现在从每行每列各拿走一张卡片(没有可以不拿),求可以拿到的最大权值。

卡片数N<=1e5,H,W<=1e5

思路:

显然可以构造成一个最大费用流模型:每张卡片到它对应的行列各有一条费用0,容量1的边;源点到每张卡片有一条费用为卡片权值,容量1的边;每个行列到汇点有一条费用0,容量1的边。但是边数有5e5,应该会超时吧?

观察这个图发现除去源点和汇点是一张二分图,想到是否可以利用二分图的性质简化问题。

手动模拟一波发现好像只要贪心地从大到小拿,能拿则拿,那么就能得到最佳答案。如何检测是否还能拿呢?

HALL定理:如果一个二分图上,左部|X|<=右部|Y|,如果左部点的任意一个子集U,U相连边对应右部的子集V都有|U|<=|V|,那么这个二分图有最大匹配|X|。

每次拿走点相当于在U中增加点,在V中增加边,用并查集维护一下集合的大小即可。

  1. 所在行列在同个集合中,直接判断这个集合是否满足条件
  2. 所在行列不在同一个集合中,那么判断这两个集合合并后是否满足条件,若是则合并
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=2e5+5;
struct node{
int r,c,a;
friend bool operator<(node a,node b){
return a.a>b.a;
}
}st[maxn];
int fa[maxn],S[maxn],T[maxn];
int n,H,W;
int init(){
for(int i=1;i<=H+W;i++){
fa[i]=i;
T[i]=1;
}
}
int find(int x){
return x==fa[x]?x:fa[x]=find(fa[x]);
}
int main(){
cin>>n>>H>>W;
init();
for(int i=1;i<=n;i++){
scanf("%d%d%d",&st[i].r,&st[i].c,&st[i].a);
}
sort(st+1,st+1+n);
ll ans=0;
for(int i=1;i<=n;i++){
// printf("%d %d %d\n",st[i].r,st[i].c,st[i].a);
int fr=find(st[i].r),fc=find(H+st[i].c);
if(fr==fc){//两个在同一集合内
if(T[fc]>=S[fc]+1){
S[fc]++;
ans=ans+st[i].a;
}
}
else{//两个不在同一集合内,要合并
if(T[fr]+T[fc]>=S[fr]+S[fc]+1){
fa[fr]=fc;
T[fc]+=T[fr];
S[fc]=S[fr]+S[fc]+1;
ans=ans+st[i].a;
}
}
}
printf("%lld\n",ans);
}

Card Collector AtCoder - 5168(二分图匹配的HALL定理)的更多相关文章

  1. 【CF981F】Round Marriage(二分答案,二分图匹配,Hall定理)

    [CF981F]Round Marriage(二分答案,二分图匹配,Hall定理) 题面 CF 洛谷 题解 很明显需要二分. 二分之后考虑如果判定是否存在完备匹配,考虑\(Hall\)定理. 那么如果 ...

  2. 关于Hall定理的学习

    基本定义 \(Hall\) 定理是二分图匹配的相关定理 用于判断二分图是否存在完美匹配 存在完美匹配的二分图即满足最大匹配数为 \(min(|X|,|Y|)\) 的二分图,也就是至少有一边的点全部被匹 ...

  3. BZOJ1135 LYZ(POI2009) Hall定理+线段树

    做这个题之前首先要了解判定二分图有没有完备匹配的Hall定理: 那么根据Hell定理,如果任何一个X子集都能连大于等于|S|的Y子集就可以获得完备匹配,那么就是: 题目变成只要不满足上面这个条件就能得 ...

  4. loj#6062. 「2017 山东一轮集训 Day2」Pair hall定理+线段树

    题意:给出一个长度为 n的数列 a和一个长度为 m 的数列 b,求 a有多少个长度为 m的连续子数列能与 b匹配.两个数列可以匹配,当且仅当存在一种方案,使两个数列中的数可以两两配对,两个数可以配对当 ...

  5. AtCoder AGC037D Sorting a Grid (二分图匹配)

    题目链接 https://atcoder.jp/contests/agc037/tasks/agc037_d 题解 这场D题终于不像AGC032D和AGC036D一样神仙了-- 还是可做的吧 虽然考场 ...

  6. Hall定理 二分图完美匹配

    充分性证明就先咕了,因为楼主太弱了,有一部分没看懂 霍尔定理内容 二分图G中的两部分顶点组成的集合分别为X, Y(假设有\(\lvert X \rvert \leq \lvert Y \rvert\) ...

  7. @atcoder - Japanese Student Championship 2019 Qualification - E@ Card Collector

    目录 @description@ @solution@ @accepted code@ @details@ @description@ N 个卡片放在 H*W 的方格图上,第 i 张卡片的权值为 Ai ...

  8. AtCoder Regular Contest 092 C - 2D Plane 2N Points(二分图匹配)

    Problem Statement On a two-dimensional plane, there are N red points and N blue points. The coordina ...

  9. (转)二分图匹配匈牙利算法与KM算法

    匈牙利算法转自于: https://blog.csdn.net/dark_scope/article/details/8880547 匈牙利算法是由匈牙利数学家Edmonds于1965年提出,因而得名 ...

随机推荐

  1. java基础笔记(1)

    ---恢复内容开始--- JVM:java虚拟机,java跨平台是通过JVM来实现的, 将java文件执行的过程:源文件----编译器----->字节码文件------解释器------> ...

  2. vs2015上编译QT程序的环境搭建

    下载相对应版本的QT(以QT5.7.0为例),进入网站http://download.qt.io/archive/qt/5.7/5.7.0/,下载MSVC版本QT,我的系统是64位,VS版本是2015 ...

  3. Python内建函数enumerate()用法及在for循环应用

    Python 内建函数enumerate() 由于这个单纯很长,不容易记住,用法还是比较广泛的,下面讲述Python内建函数enumerate()用法. 1,实例 enumerate(sequence ...

  4. 利用python处理txt文件

    前段时间做公司一个自动翻译项目需要处理大量的文案字段,手工去做简直不大可能(懒),因此借用python脚本自动化处理掉了,在此记录一下. import linecache def outputfile ...

  5. React-请求篇

    请求方式: (1)后台API:HttpPost   [FromForm] UserRetisterDTO dto 前端请求: { body:qs.stringify(dto),      header ...

  6. Docker环境下的前后端分离项目部署与运维

    本教程将从零开始部署一个前后端分离的开源项目,利用docker虚拟机的容器技术,采用分布式集群部署,将项目转换成为高性能.高负载.高可用的部署方案.包括了MySQL集群.Redis集群.负载均衡.双机 ...

  7. webpack webpack.config.js配置

    安装指定版本的webpack npm install webpack@3.6 -g 安装live-server    运行项目插件   输入live-server  运行后自动打开网页 npm ins ...

  8. Python PostgreSQL Psycopg2

    [转] http://daigong.iteye.com/blog/901160 Python如果要操作Postgresql,需要一个API,这就需要Psycopg2 1. 链接PostgreSQL并 ...

  9. 13Ajax和JQuery

    1.Ajax 1.1是什么? “Asynchronous Javascript And XML”(异步JavaScript和XML), 并不是新的技术,只是把原有的技术,整合到一起而已. 1.使用CS ...

  10. NOIP2017 Day2 T1 奶酪(并查集)

    题目描述 现有一块大奶酪,它的高度为 hhh ,它的长度和宽度我们可以认为是无限大的,奶酪 中间有许多 半径相同 的球形空洞.我们可以在这块奶酪中建立空间坐标系,在坐标系中, 奶酪的下表面为z=0z ...