超过 150 个最佳机器学习,NLP 和 Python教程
超过 150 个最佳机器学习,NLP 和 Python教程
微信号 & QQ:862251340
微信公众号:coderpai
简书地址:http://www.jianshu.com/p/2be3...
我把这篇文章分为四个部分:机器学习,NLP,Python 和 数学。我在每一部分都会包含一些关键主题,但是网上资料太广泛了,所以我不可能包括每一个可能的主题。
如果你发现好的教程,请告诉我。在这篇文章中,我把每个主题的教程数量都是控制在五到六个,这些精选出来的教程都是非常重要的。每一个链接都会链接到别的链接,从而导致很多新的教程。
Machine Learning
- Machine Learning is Fun! (medium.com/@ageitgey)
- Machine Learning Crash Course: Part I, Part II, Part III (Machine Learning at Berkeley)
- An Introduction to Machine Learning Theory and Its Applications: A Visual Tutorial with Examples (toptal.com)
- A Gentle Guide to Machine Learning (monkeylearn.com)
- Which machine learning algorithm should I use? (sas.com)
Activation and Loss Functions
- Sigmoid neurons (neuralnetworksanddeeplearning.com)
- What is the role of the activation function in a neural network? (quora.com)
- [Comprehensive list of activation functions in neural networks with pros/cons]12
- Activation functions and it’s types-Which is better? (medium.com)
- Making Sense of Logarithmic Loss (exegetic.biz)
- Loss Functions (Stanford CS231n)
- L1 vs. L2 Loss function (rishy.github.io)
- The cross-entropy cost function (neuralnetworksanddeeplearning.com)
Bias
- Role of Bias in Neural Networks (stackoverflow.com)
- Bias Nodes in Neural Networks (makeyourownneuralnetwork.blogspot.com)
- What is bias in artificial neural network? (quora.com)
Perceptron
- Perceptrons (neuralnetworksanddeeplearning.com)
- The Perception (natureofcode.com)
- Single-layer Neural Networks (Perceptrons) (dcu.ie)
- From Perceptrons to Deep Networks (toptal.com)
Regression
- Introduction to linear regression analysis (duke.edu)
- Linear Regression (ufldl.stanford.edu)
- Linear Regression (readthedocs.io)
- Logistic Regression (readthedocs.io)
- [Simple Linear Regression Tutorial for Machine Learning]29
- [Logistic Regression Tutorial for Machine Learning]30
- Softmax Regression (ufldl.stanford.edu)
Gradient Descent
- Learning with gradient descent (neuralnetworksanddeeplearning.com)
- Gradient Descent (iamtrask.github.io)
- How to understand Gradient Descent algorithm (kdnuggets.com)
- [An overview of gradient descent optimization algorithms]35
- Optimization: Stochastic Gradient Descent (Stanford CS231n)
Generative Learning
- Generative Learning Algorithms (Stanford CS229)
- A practical explanation of a Naive Bayes classifier (monkeylearn.com)
Support Vector Machines
- An introduction to Support Vector Machines (SVM) (monkeylearn.com)
- Support Vector Machines (Stanford CS229)
- Linear classification: Support Vector Machine, Softmax (Stanford 231n)
Backpropagation
- Yes you should understand backprop (medium.com/@karpathy)
- Can you give a visual explanation for the back propagation algorithm for neural networks? (github.com/rasbt)
- [How the backpropagation algorithm works]45
- Backpropagation Through Time and Vanishing Gradients (wildml.com)
- [A Gentle Introduction to Backpropagation Through Time]47
- Backpropagation, Intuitions (Stanford CS231n)
Deep Learning
- Deep Learning in a Nutshell (nikhilbuduma.com)
- A Tutorial on Deep Learning (Quoc V. Le)
- What is Deep Learning? (machinelearningmastery.com)
- What’s the Difference Between Artificial Intelligence, Machine Learning, and Deep Learning? (nvidia.com)
Optimization and Dimensionality Reduction
- Seven Techniques for Data Dimensionality Reduction (knime.org)
- Principal components analysis (Stanford CS229)
- Dropout: A simple way to improve neural networks (Hinton @ NIPS 2012)
- How to train your Deep Neural Network (rishy.github.io)
Long Short Term Memory(LSTM)
- [A Gentle Introduction to Long Short-Term Memory Networks by the Experts]57
- Understanding LSTM Networks (colah.github.io)
- Exploring LSTMs (echen.me)
- Anyone Can Learn To Code an LSTM-RNN in Python (iamtrask.github.io)
Convolutional Neural Networks (CNNs)
- Introducing convolutional networks (neuralnetworksanddeeplearning.com)
- [Deep Learning and Convolutional Neural Networks]62
- Conv Nets: A Modular Perspective (colah.github.io)
- Understanding Convolutions (colah.github.io)
Recurrent Neural Nets (RNNs)
- Recurrent Neural Networks Tutorial (wildml.com)
- Attention and Augmented Recurrent Neural Networks (distill.pub)
- [The Unreasonable Effectiveness of Recurrent Neural Networks]68
- A Deep Dive into Recurrent Neural Nets (nikhilbuduma.com)
Reinforcement Learning
- [Simple Beginner’s guide to Reinforcement Learning & its implementation]70
- A Tutorial for Reinforcement Learning (mst.edu)
- Learning Reinforcement Learning (wildml.com)
- Deep Reinforcement Learning: Pong from Pixels (karpathy.github.io)
Generative Adversarial Networks (GANs)
- What’s a Generative Adversarial Network? (nvidia.com)
- [Abusing Generative Adversarial Networks to Make 8-bit Pixel Art]75
- An introduction to Generative Adversarial Networks (with code in TensorFlow) (aylien.com)
- Generative Adversarial Networks for Beginners (oreilly.com)
Multi-task Learning
- [An Overview of Multi-Task Learning in Deep Neural Networks]78
NLP
- A Primer on Neural Network Models for Natural Language Processing (Yoav Goldberg)
- The Definitive Guide to Natural Language Processing (monkeylearn.com)
- Introduction to Natural Language Processing (algorithmia.com)
- Natural Language Processing Tutorial (vikparuchuri.com)
- Natural Language Processing (almost) from Scratch (arxiv.org)
Deep Learning and NLP
- Deep Learning applied to NLP (arxiv.org)
- Deep Learning for NLP (without Magic) (Richard Socher)
- Understanding Convolutional Neural Networks for NLP (wildml.com)
- Deep Learning, NLP, and Representations (colah.github.io)
- Embed, encode, attend, predict: The new deep learning formula for state-of-the-art NLP models (explosion.ai)
- [Understanding Natural Language with Deep Neural Networks Using Torch]89
- Deep Learning for NLP with Pytorch (pytorich.org)
Word Vectors
- Bag of Words Meets Bags of Popcorn (kaggle.com)
- On word embeddings Part I, Part II, Part III (sebastianruder.com)
- The amazing power of word vectors (acolyer.org)
- word2vec Parameter Learning Explained (arxiv.org)
- Word2Vec Tutorial — The Skip-Gram Model, [Negative Sampling]98
Encoder-Decoder
- Attention and Memory in Deep Learning and NLP (wildml.com)
- Sequence to Sequence Models (tensorflow.org)
- Sequence to Sequence Learning with Neural Networks (NIPS 2014)
- Machine Learning is Fun Part 5: Language Translation with Deep Learning and the Magic of Sequences (medium.com/@ageitgey)
- [How to use an Encoder-Decoder LSTM to Echo Sequences of Random Integers]103
- tf-seq2seq (google.github.io)
Python
- 7 Steps to Mastering Machine Learning With Python (kdnuggets.com)
- An example machine learning notebook (nbviewer.jupyter.org)
Examples
- [How To Implement The Perceptron Algorithm From Scratch In Python]107
- Implementing a Neural Network from Scratch in Python (wildml.com)
- A Neural Network in 11 lines of Python (iamtrask.github.io)
- [Implementing Your Own k-Nearest Neighbour Algorithm Using Python]110
- Demonstration of Memory with a Long Short-Term Memory Network in Python (machinelearningmastery.com)
- How to Learn to Echo Random Integers with Long Short-Term Memory Recurrent Neural Networks (machinelearningmastery.com)
- [How to Learn to Add Numbers with seq2seq Recurrent Neural Networks]113
Scipy and numpy
- Scipy Lecture Notes (scipy-lectures.org)
- Python Numpy Tutorial (Stanford CS231n)
- An introduction to Numpy and Scipy (UCSB CHE210D)
- A Crash Course in Python for Scientists (nbviewer.jupyter.org)
scikit-learn
- PyCon scikit-learn Tutorial Index (nbviewer.jupyter.org)
- scikit-learn Classification Algorithms (github.com/mmmayo13)
- scikit-learn Tutorials (scikit-learn.org)
- Abridged scikit-learn Tutorials (github.com/mmmayo13)
Tensorflow
- Tensorflow Tutorials (tensorflow.org)
- Introduction to TensorFlow — CPU vs GPU (medium.com/@erikhallstrm)
- TensorFlow: A primer (metaflow.fr)
- RNNs in Tensorflow (wildml.com)
- Implementing a CNN for Text Classification in TensorFlow (wildml.com)
- How to Run Text Summarization with TensorFlow (surmenok.com)
PyTorch
- PyTorch Tutorials (pytorch.org)
- A Gentle Intro to PyTorch (gaurav.im)
- Tutorial: Deep Learning in PyTorch (iamtrask.github.io)
- PyTorch Examples (github.com/jcjohnson)
- PyTorch Tutorial (github.com/MorvanZhou)
- PyTorch Tutorial for Deep Learning Researchers (github.com/yunjey)
Math
- Math for Machine Learning (ucsc.edu)
- Math for Machine Learning (UMIACS CMSC422)
Linear algebra
- An Intuitive Guide to Linear Algebra (betterexplained.com)
- A Programmer’s Intuition for Matrix Multiplication (betterexplained.com)
- Understanding the Cross Product (betterexplained.com)
- Understanding the Dot Product (betterexplained.com)
- Linear Algebra for Machine Learning (U. of Buffalo CSE574)
- Linear algebra cheat sheet for deep learning (medium.com)
- Linear Algebra Review and Reference (Stanford CS229)
Probability
- Understanding Bayes Theorem With Ratios (betterexplained.com)
- Review of Probability Theory (Stanford CS229)
- Probability Theory Review for Machine Learning (Stanford CS229)
- Probability Theory (U. of Buffalo CSE574)
- Probability Theory for Machine Learning (U. of Toronto CSC411)
Calculus
- How To Understand Derivatives: The Quotient Rule, Exponents, and Logarithms (betterexplained.com)
- [How To Understand Derivatives: The Product, Power & Chain Rules]150
- Vector Calculus: Understanding the Gradient (betterexplained.com)
- Differential Calculus (Stanford CS224n)
- Calculus Overview (readthedocs.io)
超过 150 个最佳机器学习,NLP 和 Python教程的更多相关文章
- 干货 | 请收下这份2018学习清单:150个最好的机器学习,NLP和Python教程
机器学习的发展可以追溯到1959年,有着丰富的历史.这个领域也正在以前所未有的速度进化.在之前的一篇文章中,我们讨论过为什么通用人工智能领域即将要爆发.有兴趣入坑ML的小伙伴不要拖延了,时不我待! 在 ...
- 机器学习、NLP、Python和Math最好的150余个教程(建议收藏)
编辑 | MingMing 尽管机器学习的历史可以追溯到1959年,但目前,这个领域正以前所未有的速度发展.最近,我一直在网上寻找关于机器学习和NLP各方面的好资源,为了帮助到和我有相同需求的人,我整 ...
- 【NLP】Python NLTK 走进大秦帝国
Python NLTK 走进大秦帝国 作者:白宁超 2016年10月17日18:54:10 摘要:NLTK是由宾夕法尼亚大学计算机和信息科学使用python语言实现的一种自然语言工具包,其收集的大量公 ...
- 最强数据集50个最佳机器学习公共数据,可以帮你验证idea!
1. 寻找数据集の奥义 根据CMU的说法,寻找一个好用的数据集需要注意一下几点: 数据集不混乱,否则要花费大量时间来清理数据. 数据集不应包含太多行或列,否则会难以使用. 数据越干净越好,清理大型数 ...
- 【NLP】Python NLTK处理原始文本
Python NLTK 处理原始文本 作者:白宁超 2016年11月8日22:45:44 摘要:NLTK是由宾夕法尼亚大学计算机和信息科学使用python语言实现的一种自然语言工具包,其收集的大量公开 ...
- 【NLP】Python NLTK获取文本语料和词汇资源
Python NLTK 获取文本语料和词汇资源 作者:白宁超 2016年11月7日13:15:24 摘要:NLTK是由宾夕法尼亚大学计算机和信息科学使用python语言实现的一种自然语言工具包,其收集 ...
- 机器学习算法与Python实践之(四)支持向量机(SVM)实现
机器学习算法与Python实践之(四)支持向量机(SVM)实现 机器学习算法与Python实践之(四)支持向量机(SVM)实现 zouxy09@qq.com http://blog.csdn.net/ ...
- 机器学习算法与Python实践之(三)支持向量机(SVM)进阶
机器学习算法与Python实践之(三)支持向量机(SVM)进阶 机器学习算法与Python实践之(三)支持向量机(SVM)进阶 zouxy09@qq.com http://blog.csdn.net/ ...
- 机器学习算法与Python实践之(二)支持向量机(SVM)初级
机器学习算法与Python实践之(二)支持向量机(SVM)初级 机器学习算法与Python实践之(二)支持向量机(SVM)初级 zouxy09@qq.com http://blog.csdn.net/ ...
随机推荐
- 别人的Linux私房菜(24-25)X Window设置介绍、Linux内核编译与管理
X Window主要组件为:X Server .X Client . Window Manager . Display Manager. X Server管理硬件,X Client则为应用程序,将所需 ...
- MySQL数据库入门备份数据库
MySQL数据库入门——备份数据库 一提到数据,大家神经都会很紧张,数据的类型有很多种,但是总归一点,数据很重要,非常重要,因此,日常的数据备份工作就成了运维工作的重点中的重点的重点....... ...
- 关于KMeans和range的使用
#!/usr/bin/python#-*-coding:utf-8-*-import numpy as npfrom sklearn.cluster import KMeansfrom scipy.s ...
- openapi
https://www.breakyizhan.com/swagger/2810.html https://www.cnblogs.com/serious1529/p/9318115.html htt ...
- php实用小技巧【持续更新】
这是本人开始做项目的时候遇到过的问题还有解决方法 1.eval函数 能把字符串转换成可执行的php代码,如果字符串不是可执行的php代码的话,需要在前面加上@,屏蔽notice 2.array_mer ...
- Qt Creator 4.9 发布
Qt Creator 4.8中引入了语言服务器协议支持,允许Qt Creator通过利用此标准轻松支持更多编程语言,使IDE和其他编程工具可以轻松地获得通用编程语言支持的交换格式.使用Qt Creat ...
- js 判断确切判断Array和Object
js的数组其实是特殊的对象. 这就导致: typeof [1,2,3] === 'object' [1,2,3] instanceof Object 和 [1,2,3] instanceof Arr ...
- 牛客假日团队赛6 D 迷路的牛 (思维)
链接:https://ac.nowcoder.com/acm/contest/993/D 来源:牛客网 迷路的牛 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 32768K,其他语言 ...
- [BZOJ1299]巧克力棒(博弈论,线性基)
[BZOJ1299]巧克力棒 Description TBL和X用巧克力棒玩游戏.每次一人可以从盒子里取出若干条巧克力棒,或是将一根取出的巧克力棒吃掉正整数长度.TBL先手两人轮流,无法操作的人输. ...
- Linux系统无法启动故障解决方案
Linux系统无法启动故障解决方案 2011-09-27 09:42 佚名 比特网 我要评论(0) 字号:T | T 不管你多么喜爱你的Linux系统机器,有时候你都必须恢复你的系统.是的,即使一台L ...