bzoj 1001 原图最小割转化为对偶图最短路
题目大意:
Input
Output
输出一个整数,表示参与伏击的狼的最小数量.
Sample Input
5 6 4
4 3 1
7 5 3
5 6 7 8
8 7 6 5
5 5 5
6 6 6
Sample Output
对偶图就是在原图中标号,然后找规律构造,如上图(借用了其他人的图);
我不知道如果不是这种规则的图,还能不能构造出对偶图,个人觉得不行;
这样堆优化的dijkstra的时间复杂度就是O(nlogn)
代码如下:
#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
#include<string>
#include<algorithm>
#include<queue>
#include<vector> using namespace std; typedef long long ll;
typedef long long LL;
typedef pair<int,int> pii;
const int inf = 0x3f3f3f3f;
const int maxn = 1000000;
const ll mod = 1e9+9;
int n,m,num,cnt;
struct Edge{
int v,w,next;
}edge[6*maxn+100];
int head[2*maxn+100],dis[2*maxn+100];
bool vis[2*maxn+100];
struct Node{
int v,w;
Node(int _v,int _w):v(_v),w(_w) {}
bool operator<(const Node& a)const{
return w>a.w;
}
};
void addEdge(int u,int v,int w){
edge[cnt].v=v;
edge[cnt].w=w;
edge[cnt].next=head[u];
head[u]=cnt++;
}
void dijkstra(int s){
memset(vis,false,sizeof(vis));
memset(dis,inf,sizeof(dis));
dis[s]=0;
Node tmp(s,0);
priority_queue<Node>pq;
pq.push(tmp);
while(!pq.empty()){
tmp=pq.top();
pq.pop();
int u=tmp.v;
if(vis[u]){
continue;
}
vis[u]=true;
for(int i=head[u];i!=-1;i=edge[i].next){
int v=edge[i].v;
int w=edge[i].w;
if(dis[v]>dis[u]+w){
dis[v]=dis[u]+w;
pq.push(Node(v,dis[v]));
}
}
}
}
int main(){
scanf("%d%d",&n,&m);
if(n==1||m==1){
int ans=inf;
int _max=max(n,m);
for(int i=1;i<_max;i++){
int u;
scanf("%d",&u);
ans=min(ans,u);
}
printf("%d\n",ans);
return 0;
}
cnt=0;
memset(head,-1,sizeof(head));
int u,v,w;
for(int i=1;i<=n;i++){
for(int j=1;j<m;j++){
scanf("%d",&w);
if(i==1){
u=1;
v=j*2+1;
addEdge(u,v,w);
addEdge(v,u,w);
}else if(i==n){
u=(n-1)*(m-1)*2+2;
v=((i-2)*(m-1)+j)*2;
addEdge(u,v,w);
addEdge(v,u,w);
}else{
u=((i-2)*(m-1)+j)*2;
v=((i-1)*(m-1)+j)*2+1;
addEdge(u,v,w);
addEdge(v,u,w);
}
}
}
for(int i=1;i<n;i++){
for(int j=1;j<=m;j++){
scanf("%d",&w);
if(j==1){
u=(n-1)*(m-1)*2+2;
v=((i-1)*(m-1)+j)*2;
addEdge(u,v,w);
addEdge(v,u,w);
}else if(j==m){
u=1;
v=((i-1)*(m-1)+j-1)*2+1;
addEdge(u,v,w);
addEdge(v,u,w);
}else{
u=((i-1)*(m-1)+j-1)*2+1;
v=((i-1)*(m-1)+j)*2;
addEdge(u,v,w);
addEdge(v,u,w);
}
}
}
for(int i=1;i<n;i++){
for(int j=1;j<m;j++){
scanf("%d",&w);
u=((i-1)*(m-1)+j)*2;
v=((i-1)*(m-1)+j)*2+1;
addEdge(u,v,w);
addEdge(v,u,w);
}
}
num=(n-1)*(m-1)*2+2;
dijkstra(1);
printf("%d\n",dis[num]);
return 0;
}
bzoj 1001 原图最小割转化为对偶图最短路的更多相关文章
- BZOJ 1001 狼抓兔子 (网络流最小割/平面图的对偶图的最短路)
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1001 算法讨论: 1.可以用最大流做,最大流等于最小割. 2.可以把这个图转化其对偶图,然 ...
- BZOJ 1001 狼抓兔子 (最小割转化成最短路)
1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec Memory Limit: 162 MBSubmit: 27715 Solved: 7134[Submit][ ...
- 对偶图 && 【BZOJ】1001: [BeiJing2006]狼抓兔子(对偶图+最短路)
http://www.lydsy.com/JudgeOnline/problem.php?id=1001 可谓惨不忍睹,一下午就在调这题了. 很久以前看到这题是一眼最大流,看到n<=1000,我 ...
- spoj 839 OPTM - Optimal Marks&&bzoj 2400【最小割】
因为是异或运算,所以考虑对每一位操作.对于所有已知mark的点,mark的当前位为1则连接(s,i,inf),否则连(i,t,inf),然后其他的边按照原图连(u,v,1),(v,u,1),跑最大流求 ...
- [置顶] [BZOJ]2127: happiness 最小割
happiness: Description 高一一班的座位表是个n*m的矩阵,经过一个学期的相处,每个同学和前后左右相邻的同学互相成为了好朋友.这学期要分文理科了,每个同学对于选择文科与理科有着自己 ...
- BZOJ.2229.[ZJOI2011]最小割(最小割树)
题目链接 题意:给定一张无向图,求任意两点之间的最小割. 在所有点中任选两个点作为源点\(S\).汇点\(T\),求它们之间的最小割\(ans\),并把原图分成两个点集\(S',T'\),用\(ans ...
- Wannafly挑战赛26-F-msc的棋盘[最小割转化dp]
题意 一个大小为 \(n*m\) 的棋盘,知道每一列放了多少棋子,求有多少摆放方案满足要求. \(n,m\leq 50\) . 分析 如果是求是否有方案的话可以考虑网络流,行列连边,列容量为 \(b_ ...
- Atcoder Regular Contest 125 E - Snack(最小割转化+贪心)
Preface: 这是生平第一道现场 AC 的 arc E,也生平第一次经历了 performance \(\ge 2800\),甚至还生平第一次被 hb 拉到会议里讲题,讲的就是这个题,然鹅比较尬 ...
- bzoj 2229 [Zjoi2011]最小割(分治+最小割)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2229 [题意] 回答若干个关于割不超过x的点对数目的询问. [思路] [最小割最多有n ...
随机推荐
- 怎么实现web端上传超大文件
1.介绍enctype enctype 属性规定发送到服务器之前应该如何对表单数据进行编码. enctype作用是告知服务器请求正文的MIME类型(请求消息头content-type的作用一样) 1. ...
- C#用户自定义控件(含源代码)-透明文本框
using System; using System.Collections; using System.ComponentModel; using System.Drawing; using Sys ...
- Solidworks 2019 无法获得下列许可solidworks standard无效的(不一致的)使用许可号码(-8,544,0)
若出现如下述错误,只需将C:\***(C盘中生成注册表的文件夹)\Program Files\SOLIDWORKS Corp\SOLIDWORKS下的netapi32.dll文件复制到所安装路径中SO ...
- selenuim&PhantomJS&Beautifulsoup练习经典实例
# coding = utf-8__autor__ = 'litao' from selenium import webdriverfrom selenium.webdriver.common.by ...
- Java-访问控制权限
Java面向对象-访问控制权限 Java中,可以通过一些Java关键字,来设置访问控制权限: 主要有 private(私有), package(包访问权限),protected(子类访问权限),pub ...
- centos R包 tidyverse安装
tidyverse安装失败,install.packages('tidyverse') 错误原因大概是其中有个依赖包xml2安装不上,解决办法是yum install libxml2-devel,这样 ...
- Python的一些高级特性
内容基本上来自于廖雪峰老师的blog相当于自己手打了一遍,加强加强理解吧. http://www.liaoxuefeng.com/wiki/001374738125095c955c1e6d8bb493 ...
- python之字符串的切片
切片操作(slice)可以从一个字符串中获取子字符串(字符串的一部分).我们使用一对方括号.起始偏移量start.终止偏移量end 以及可选的步长step 来定义一个分片. 格式: [start:en ...
- PHPer面试指南-laravel 篇
简述 Laravel 的生命周期 Laravel 采用了单一入口模式,应用的所有请求入口都是 public/index.php 文件. 注册类文件自动加载器 : Laravel通过 composer ...
- 《JAVA设计模式》之单例模式(Singleton)
在阎宏博士的<JAVA与模式>一书中开头是这样描述单例模式的: 作为对象的创建模式,单例模式确保某一个类只有一个实例,而且自行实例化并向整个系统提供这个实例.这个类称为单例类. 单例模式的 ...