08-图8 How Long Does It Take(25 分)邻接表和队列
Given the relations of all the activities of a project, you are supposed to find the earliest completion time of the project.
Input Specification:
Each input file contains one test case. Each case starts with a line containing two positive integers N (≤100), the number of activity check points (hence it is assumed that the check points are numbered from 0 to N−1), and M, the number of activities. Then M lines follow, each gives the description of an activity. For the i
-th activity, three non-negative numbers are given: S[i]
, E[i]
, and L[i]
, where S[i]
is the index of the starting check point, E[i]
of the ending check point, and L[i]
the lasting time of the activity. The numbers in a line are separated by a space.
Output Specification:
For each test case, if the scheduling is possible, print in a line its earliest completion time; or simply output "Impossible".
Sample Input 1:
9 12
0 1 6
0 2 4
0 3 5
1 4 1
2 4 1
3 5 2
5 4 0
4 6 9
4 7 7
5 7 4
6 8 2
7 8 4
Sample Output 1:
18
Sample Input 2:
4 5
0 1 1
0 2 2
2 1 3
1 3 4
3 2 5
Sample Output 2:
Impossible
我的答案
- #include <stdio.h>
- #include <stdlib.h>
- #include <unistd.h>
- #define ERROR -1
- #define false 0
- #define true 1
- #define MaxVertexNum 100
- #define INFINITY 65535
- #define MaxQueue 100
- typedef int Vertex;
- typedef int WeightType;
- typedef int bool;
- //边
- typedef struct ENode *PtrToENode;
- struct ENode {
- Vertex V1, V2;
- WeightType Weight;
- };
- typedef PtrToENode Edge;
- //邻接点
- typedef struct AdjVNode *PtrToAdjVNode;
- struct AdjVNode {
- Vertex AdjV; //下标
- WeightType Weight; //边权重
- PtrToAdjVNode Next; //指向下一个邻接点
- };
- //顶点
- typedef struct VNode {
- PtrToAdjVNode FirstEdge; //边表头指针
- // DataType Data; //存顶点的户数据
- }AdjList[MaxVertexNum];
- //图结点
- typedef struct GNode *PtrToGNode;
- struct GNode {
- int Nv;
- int Ne;
- AdjList G;
- };
- typedef PtrToGNode LGraph;
- struct QNode {
- Vertex Data[MaxQueue];
- int rear;
- int front;
- };
- typedef struct QNode *Queue;
- int IsEmptyQ(Queue PtrQ)
- {
- return (PtrQ->front == PtrQ->rear);
- }
- void AddQ(Queue PtrQ, Vertex item)
- {
- if((PtrQ->rear+)%MaxQueue == PtrQ->front) {
- printf("Queue full");
- return;
- }
- PtrQ->rear = (PtrQ->rear+)%MaxQueue;
- PtrQ->Data[PtrQ->rear] = item;
- }
- Vertex DeleteQ(Queue PtrQ)
- {
- if(PtrQ->front == PtrQ->rear) {
- printf("Queue Empty");
- return -;
- } else {
- PtrQ->front = (PtrQ->front+)%MaxQueue;
- return PtrQ->Data[PtrQ->front];
- }
- }
- LGraph CreateGraph(int VertexNum)
- {
- Vertex V;
- LGraph Graph;
- Graph = (LGraph)malloc(sizeof(struct GNode));
- Graph->Nv = VertexNum;
- Graph->Ne = ;
- for(V=;V<Graph->Nv;V++)
- Graph->G[V].FirstEdge = NULL;
- return Graph;
- }
- void InsertEdge(LGraph Graph, Edge E)
- {
- PtrToAdjVNode NewNode;
- //有向边
- NewNode = (PtrToAdjVNode)malloc(sizeof(struct AdjVNode));
- NewNode->AdjV = E->V2;
- NewNode->Weight = E->Weight;
- //向V1插入V2
- NewNode->Next = Graph->G[E->V1].FirstEdge;
- Graph->G[E->V1].FirstEdge = NewNode;
- }
- LGraph BuildGraph()
- {
- LGraph Graph;
- Edge E;
- int Nv, i;
- scanf("%d", &Nv);
- Graph = CreateGraph(Nv);
- scanf(" %d\n", &(Graph->Ne));
- if(Graph->Ne != ) {
- E = (Edge)malloc(sizeof(struct ENode));
- for(i=;i<Graph->Ne;i++) {
- scanf("%d %d %d\n", &E->V1, &E->V2, &E->Weight);
- InsertEdge(Graph, E);
- }
- }
- return Graph;
- }
- void PrintGraph(LGraph Graph)
- {
- Vertex V;
- PtrToAdjVNode W;
- for(V=;V<Graph->Nv;V++) {
- printf("%d:", V);
- for(W=Graph->G[V].FirstEdge;W;W=W->Next) {
- printf("[%3d %3d] ", W->AdjV, W->Weight);
- }
- printf("\n");
- }
- }
- /* 邻接表存储 - 拓扑排序算法 */
- bool TopSort( LGraph Graph, Vertex TopOrder[], Vertex Earliest[])
- { /* 对Graph进行拓扑排序, TopOrder[]顺序存储排序后的顶点下标 */
- int Indegree[MaxVertexNum], cnt;
- Vertex V;
- PtrToAdjVNode W;
- Queue Q = (Queue)malloc(sizeof(struct QNode)*( Graph->Nv ));
- /* 初始化Indegree[] */
- for (V=; V<Graph->Nv; V++)
- Indegree[V] = ;
- /* 遍历图,得到Indegree[] */
- for (V=; V<Graph->Nv; V++)
- for (W=Graph->G[V].FirstEdge; W; W=W->Next)
- Indegree[W->AdjV]++; /* 对有向边<V, W->AdjV>累计终点的入度 */
- /* 将所有入度为0的顶点入列 */
- for (V=; V<Graph->Nv; V++)
- if ( Indegree[V]== ) {
- AddQ(Q, V);
- Earliest[V] = ; //起点为0
- }
- /* 下面进入拓扑排序 */
- cnt = ;
- while( !IsEmptyQ(Q) ){
- V = DeleteQ(Q); /* 弹出一个入度为0的顶点 */
- TopOrder[cnt++] = V; /* 将之存为结果序列的下一个元素 */
- /* 对V的每个邻接点W->AdjV */
- for ( W=Graph->G[V].FirstEdge; W; W=W->Next )
- if ( --Indegree[W->AdjV] == ) {/* 若删除V使得W->AdjV入度为0 */
- AddQ(Q, W->AdjV); /* 则该顶点入列 */
- Earliest[W->AdjV] = Earliest[V] + W->Weight;
- // if((Earliest[V]+W->Weight)>Earliest[W->AdjV] && Earliest[W->AdjV])
- // Earliest[W->AdjV] = Earliest[V] + W->Weight;
- }
- } /* while结束*/
- if ( cnt != Graph->Nv )
- return false; /* 说明图中有回路, 返回不成功标志 */
- else
- return true;
- }
- int main()
- {
- LGraph Graph;
- WeightType Earliest[MaxVertexNum];
- Vertex TopOrder[MaxVertexNum],V;
- int ret;
- Graph = BuildGraph();
- // PrintGraph(Graph);
- ret = TopSort(Graph, TopOrder, Earliest);
- if(ret == false) {
- printf("Impossible");
- } else if(ret == true) {
- int max = Earliest[];
- for(int i=;i<Graph->Nv;i++) {
- // printf("%d: [%d]\n", i, Earliest[i]);
- if(max < Earliest[i])
- max = Earliest[i];
- }
- printf("%d", max);
- }
- // printf("TopOrder:");
- // for(V=0;V<Graph->Nv;V++)
- // printf("%d ", TopOrder[V]);
- // printf("\n");
- return ;
- }
08-图8 How Long Does It Take(25 分)邻接表和队列的更多相关文章
- 图的bfs遍历模板(邻接矩阵存储和邻接表存储)
bfs遍历图模板伪代码: bfs(u){ //遍历u所在的连通块 queue q; //将u入队 inq[u] = true; while (q非空){ //取出q的队首元素u进行访问 for (从u ...
- 图结构练习——判断给定图是否存在合法拓扑序列(dfs算法(第一个代码),邻接矩阵(前两个代码),邻接表(第三个代码))
sdut 2140 图结构练习——判断给定图是否存在合法拓扑序列 Time Limit: 1000ms Memory limit: 65536K 有疑问?点这里^_^ 题目描述 给定一个有向图 ...
- 数据结构 《2》----基于邻接表表示的图的实现 DFS(递归和非递归), BFS
图通常有两种表示方法: 邻接矩阵 和 邻接表 对于稀疏的图,邻接表表示能够极大地节省空间. 以下是图的数据结构的主要部分: struct Vertex{ ElementType element; // ...
- 数据结构学习笔记05图 (邻接矩阵 邻接表-->BFS DFS、最短路径)
数据结构之图 图(Graph) 包含 一组顶点:通常用V (Vertex) 表示顶点集合 一组边:通常用E (Edge) 表示边的集合 边是顶点对:(v, w) ∈E ,其中v, w ∈ V 有向边& ...
- 图的邻接表存储表示(C)
//---------图的邻接表存储表示------- #include<stdio.h> #include<stdlib.h> #define MAX_VERTEXT_NUM ...
- 数据结构(11) -- 邻接表存储图的DFS和BFS
/////////////////////////////////////////////////////////////// //图的邻接表表示法以及DFS和BFS //////////////// ...
- 邻接表存储图,DFS遍历图的java代码实现
import java.util.*; public class Main{ static int MAX_VERTEXNUM = 100; static int [] visited = new i ...
- Invitation Cards(邻接表+逆向建图+SPFA)
Time Limit: 8000MS Memory Limit: 262144K Total Submissions: 17538 Accepted: 5721 Description In ...
- 图的建立——邻接表表示(C语言+VC6.0平台)
图是一种重要而且相对复杂的数据结构,在实际编程中非常有用.邻接表是图的主要表示形式之一,是一种链接表表示方法. #include<stdio.h> #include<stdlib.h ...
- 图的邻接表存储 c实现
图的邻接表存储 c实现 (转载) 用到的数据结构是 一个是顶点表,包括顶点和指向下一个邻接点的指针 一个是边表, 数据结构跟顶点不同,存储的是顶点的序号,和指向下一个的指针 刚开始的时候把顶点表初始化 ...
随机推荐
- 仅对原表新增列的全量数据.csv
w
- 测开之路七十四:python处理kafka
kafka-python地址:https://github.com/dpkp/kafka-python 安装kafka-python:pip install kafka-python 接收消息 fro ...
- vmware内部错误
今天不知道怎么回事 wmware workstation重启的时候总是报内部错误 差点重装了 幸亏找到了这个 原来只要以管理员的身份运行vwware就ok了 http://www.xiaoluobok ...
- 排序算法二:归并排序(Merge sort)
归并排序(Merge sort)用到了分治思想,即分-治-合三步,算法平均时间复杂度是O(nlgn). (一)算法实现 private void merge_sort(int[] array, int ...
- Waiter.js
var Waiter = function() { var dfd = [], doneArr = [], failArr = [], slic ...
- zabbix 微信告警配置
作者信息 邮箱:sijiayong000@163.com Q Q:601566386 Zabbix 微信告警 摘要:Zabbix可以通过多种方式把告警信息发送到指定人,常用的有邮件,短信报警方式,但是 ...
- PowerShell 远程执行命令
PowerShell 远程执行命令 最近在做一些自动化的测试工作,在代码实现的过程中需要远程启动/关闭一些服务或者测试机. 我首先想到的是建立一个website,通过网站对一些服务进行操作,但是这样感 ...
- Socket编程半双工
服务器 package com.test; import java.io.IOException; import java.net.*; import java.io.*; public class ...
- HNOI2019fish
\({\rm fish}\) 20分: 六个for,点积判锐角钝角. #include <vector> #include <queue> #include <cmath ...
- BZOJ 1683.City skyline 城市地平线
传送门 从左到右扫一遍,考虑什么时候会和之前形成同一幢房子从而不用统计 显然是当前的高度和之前某个点高度相同,并且它们之间没有更矮的建筑 考虑用一个单调栈维护一个单调上升的房子轮廓,然后对于扫到的每一 ...