Python3.2开始,标准库为我们提供了concurrent.futures模块,它提供了ThreadPoolExecutor和ProcessPoolExecutor两个类,实现了对threading和multiprocessing的进一步抽象,对编写线程池/进程池提供了直接的支持,他属于上层的封装,对于用户来说,不用在考虑那么多东西了。

官方参考资料:https://pythonhosted.org/futures/

1.Executor

Exectuor是基础模块,这是一个抽象类,其子类分为ThreadPoolExecutor和ProcessPoolExecutor,分别被用来创建线程池和进程池。

提供的方法如下:

Executor.submit(fn, *args, **kwargs)

fn:为需要异步执行的函数
args,kwargs:为给函数传递的参数
就来看看官网的这个例子:

1
2
3
with ThreadPoolExecutor(max_workers=1) as executor:
    future = executor.submit(pow, 323, 1235)
    print(future.result())

  

我们使用submit方法来往线程池中加入一个task(pow函数),submit返回一个Future对象。其中future.result()的result方法的作用是拿到调用返回的结果。如果没有执行完毕就会去等待。这里我们使用with操作符,使得当任务执行完成之后,自动执行shutdown函数,而无需编写相关释放代码。
关于更多future的具体方法说明看后面的future部分解释。

Executor.map(fn, *args, **kwargs)

map(func, *iterables, timeout=None)
此map函数和python自带的map函数功能类似,只不过concurrent模块的map函数从迭代器获得参数后异步执行。并且,每一个异步操作,能用timeout参数来设置超时时间,timeout的值可以是int或float型,如果操作timeout的话,会raisesTimeoutError。如果timeout参数不指定的话,则不设置超时间。

func:为需要异步执行的函数
iterables:可以是一个能迭代的对象.
timeout:设置每次异步操作的超时时间

1
2
3
4
5
6
7
8
9
from concurrent.futures import ThreadPoolExecutor
import requests
URLS = ['http://www.163.com', 'https://www.baidu.com/', 'https://github.com/']
def load_url(url):
        req= requests.get(url, timeout=60)
        print('%r page is %d bytes' % (url, len(req.content)))
executor = ThreadPoolExecutor(max_workers=3)
executor.map(load_url,URLS)
print('主线程结束')

  

submit函数和map函数,根据需要,选一个使用即可。

Executor.shutdown(wait=True)

此函数用于释放异步执行操作后的系统资源。Executor实现了enter__和__exit使得其对象可以使用with操作符。
在这里可以使用with上下文关键字代替,如上面第一个submit的例子。

2.Future对象

submit函数返回future对象,future提供了跟踪任务执行状态的方法,Future实例可以被Executor.submit()方法创建。除了测试之外不应该直接创建。

cancel():尝试去取消调用。如果调用当前正在执行,不能被取消。这个方法将返回False,否则调用将会被取消,方法将返回True

cancelled():如果调用被成功取消返回True

running():如果当前正在被执行不能被取消返回True

done():如果调用被成功取消或者完成running返回True

result(Timeout = None):拿到调用返回的结果。如果没有执行完毕就会去等待

exception(timeout=None):捕获程序执行过程中的异常

add_done_callback(fn):将fn绑定到future对象上。当future对象被取消或完成运行时,fn函数将会被调用

3.wait方法

 wait方法接会返回一个tuple(元组),tuple中包含两个set(集合),一个是completed(已完成的)另外一个是uncompleted(未完成的)。使用wait方法的一个优势就是获得更大的自由度,它接收三个参数FIRST_COMPLETED, FIRST_EXCEPTION 和ALL_COMPLETE,默认设置为ALL_COMPLETED。

  如果采用默认的ALL_COMPLETED,程序会阻塞直到线程池里面的所有任务都完成,再执行主线程:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#!/usr/bin/env python 
# encoding: utf-8 
from concurrent.futures import ThreadPoolExecutor,wait,as_completed
import requests
URLS = ['http://www.163.com', 'https://www.baidu.com/', 'https://github.com/']
def load_url(url):
    req = requests.get(url, timeout=60)
    print('%r page is %d bytes' % (url, len(req.content)))
executor = ThreadPoolExecutor(max_workers=3)
f_list = []
for url in URLS:
    future = executor.submit(load_url,url)
    f_list.append(future)
print(wait(f_list))
print('主线程结束')

  

如果采用FIRST_COMPLETED参数,程序并不会等到线程池里面所有的任务都完成。

1
2
3
4
5
6
7
8
9
10
11
12
13
from concurrent.futures import ThreadPoolExecutor,wait,as_completed
import requests
URLS = ['http://www.163.com', 'https://www.baidu.com/', 'https://github.com/']
def load_url(url):
    req=requests.get(url, timeout=60)
    print('%r page is %d bytes' % (url, len(req.content)))
executor = ThreadPoolExecutor(max_workers=3)
f_list = []
for url in URLS:
    future = executor.submit(load_url,url)
    f_list.append(future)
print(wait(f_list,return_when='FIRST_COMPLETED'))
print('主线程结束')

  

关于模块的基本使用就是上面的这些。后续会做一些拓展或者案例。

python的并发模块concurrent的更多相关文章

  1. python异步并发模块concurrent.futures入门详解

    concurrent.futures是一个非常简单易用的库,主要用来实现多线程和多进程的异步并发. 本文主要对concurrent.futures库相关模块进行详解,并分别提供了详细的示例demo. ...

  2. Python之并发编程-concurrent

    方法介绍 #1 介绍 concurrent.futures模块提供了高度封装的异步调用接口 ThreadPoolExecutor:线程池,提供异步调用 ProcessPoolExecutor: 进程池 ...

  3. python并发模块之concurrent.futures(二)

    python并发模块之concurrent.futures(二) 上次我们简单的了解下,模块的一些基本方法和用法,这里我们进一步对concurrent.futures做一个了解和拓展.上次的内容点这. ...

  4. python并发模块之concurrent.futures(一)

    Python3.2开始,标准库为我们提供了concurrent.futures模块,它提供了ThreadPoolExecutor和ProcessPoolExecutor两个类,实现了对threadin ...

  5. Thread类的其他方法,同步锁,死锁与递归锁,信号量,事件,条件,定时器,队列,Python标准模块--concurrent.futures

    参考博客: https://www.cnblogs.com/xiao987334176/p/9046028.html 线程简述 什么是线程?线程是cpu调度的最小单位进程是资源分配的最小单位 进程和线 ...

  6. python 全栈开发,Day42(Thread类的其他方法,同步锁,死锁与递归锁,信号量,事件,条件,定时器,队列,Python标准模块--concurrent.futures)

    昨日内容回顾 线程什么是线程?线程是cpu调度的最小单位进程是资源分配的最小单位 进程和线程是什么关系? 线程是在进程中的 一个执行单位 多进程 本质上开启的这个进程里就有一个线程 多线程 单纯的在当 ...

  7. Python并发编程-concurrent包

    Python并发编程-concurrent包 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.concurrent.futures包概述 3.2版本引入的模块. 异步并行任务编程 ...

  8. python全栈开发,Day42(Thread类的其他方法,同步锁,死锁与递归锁,信号量,事件,条件,定时器,队列,Python标准模块--concurrent.futures)

    昨日内容回顾 线程 什么是线程? 线程是cpu调度的最小单位 进程是资源分配的最小单位 进程和线程是什么关系? 线程是在进程中的一个执行单位 多进程 本质上开启的这个进程里就有一个线程 多线程 单纯的 ...

  9. Python标准模块--concurrent.futures(进程池,线程池)

    python为我们提供的标准模块concurrent.futures里面有ThreadPoolExecutor(线程池)和ProcessPoolExecutor(进程池)两个模块. 在这个模块里他们俩 ...

随机推荐

  1. python学习笔记:(九)循环(for和while)

    在python中循环包括for和while 1.while循环 while 判断条件: statements ----表示:判断条件为真时执行statements,为假不执行 2.for语句 for ...

  2. LoadRunner 技巧之 集合点设置

    LoadRunner 技巧之 集合点设置 Loadrunner 技巧已经整理4篇了,你个一定疑问,这些知识点,网上随处可见.确实,由于长时间没有使用这个工具,造成我的一些概念开始在大脑中模糊,我只是用 ...

  3. C#程序 给IE网页IFRAME控件中所嵌入网页的元素赋值

    //引用COM组件//Microsoft HTML Object Library//Microsoft Internet Controls SHDocVw.ShellWindows shellWind ...

  4. dapper 分页根据时间条件查询时中的一个坑

    当数据库中数据很多的时候,这样写,查询速度会很慢. db.Query<AuditLogModel>(queryStr, searchModel);// 应该这样写 var logDatas ...

  5. java:LeakFilling(Servlet,JSP)

    1.web-inf中的  .jsp 文件不会运行,其他都根据web.xml文档中的自然顺序进行运行 2.keep-alive 长连接(持续)  UDP,TCP短连接 3.状态码:1(消息异常) 2(成 ...

  6. JavaScript基础修炼(14)

    目录 一. PCM格式是什么 二. 浏览器中的音频采集处理 三. 需求实现 方案1——服务端FFmpeg实现编码 方案2——ScriptProcessorNode手动处理数据流 参考文献 示例代码托管 ...

  7. Redis 入门 3.1 热身

    3.1 热身 1. 获得符合规则的键名列表 KEYS pattern pattern 支持 glob 风格通配符格式 语言 字符组 ? 匹配一个字符 * 匹配任意个(包括0个)字符 [] 匹配括号间的 ...

  8. jmeter监控服务器性能(windows系统)

    一.jmeter安装插件 前两个是jmeter插件,安装到本地的jmeter文件夹下第三个是放到服务器里的 jmeter插件官网地址:https://jmeter-plugins.org/ [我分享的 ...

  9. Spring Boot 中使用 WebSocket 实现一对多聊天及一对一聊天

    为什么需要WebSocket? 我们已经有了http协议,为什么还需要另外一个协议?有什么好处? 比如我想得到价格变化,只能是客户端想服务端发起请求,服务器返回结果,HTTP协议做不到服务器主动向客户 ...

  10. HDU 1171 Big Event in HDU (动态规划、01背包)

    Big Event in HDU Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...