首先需要安装gym模块,提供游戏的。

1,所需模块

import tensorflow as tf
import numpy as np
import gym
import random
from collections import deque
from keras.utils.np_utils import to_categorical

2,自定义一个简单的3层Dense Model

# 自定义Model
class QNetwork(tf.keras.Model):
def __init__(self):
super().__init__()
# 简单的3个Dense
self.dense1=tf.keras.layers.Dense(24,activation='relu')
self.dense2=tf.keras.layers.Dense(24,activation='relu')
self.dense3=tf.keras.layers.Dense(2)
def call(self,inputs):
x=self.dense1(inputs)
x=self.dense2(x)
x=self.dense3(x)
return x
def predict(self,inputs):
q_values=self(inputs)#调用call
return tf.argmax(q_values,axis=-1)

3,定义相关参数

# 游戏环境,实例化一个游戏
env=gym.make('CartPole-v1')
model=QNetwork() # 循环轮数设置小一点,50就可以了
num_episodes=500
num_exploration=100
max_len=1000
batch_size=32
lr=1e-3
gamma=1.
initial_epsilon=1.
final_epsilon=0.01
replay_buffer=deque(maxlen=10000) epsilon=initial_epsilon
# tensorflow2.0
optimizer=tf.compat.v1.train.AdamOptimizer(learning_rate=lr)

4,训练,测试

for i in range(num_episodes):
# 初始化环境
state=env.reset()
# 逐渐衰减,至final_epsilon
epsilon=max(initial_epsilon*(num_exploration-i)/num_exploration,final_epsilon)
for t in range(max_len):
# 当前帧绘制到屏幕
env.render()
# 以epsilon的概率随机行动,epsilon是衰减的,说明游戏动作会越来越稳定
if random.random()<epsilon:
action=env.action_space.sample()
else:
# 从当前状态预测一个动作
action=model.predict(tf.constant(np.expand_dims(state,axis=0),dtype=tf.float32)).numpy()
action=action[0]
# 执行一步动作
next_state,reward,done,info=env.step(action)
# 奖励
reward=-10.if done else reward
# 缓存
replay_buffer.append((state,action,reward,next_state,done))
state=next_state
if done:
print('episode %d,epsilon %f,score %d'%(i,epsilon,t))
break
# 预测batch_size步后执行
if len(replay_buffer)>=batch_size:
# 随机获取一个batch的数据
batch_state,batch_action,batch_reward,batch_next_state,batch_done=\
[np.array(a,dtype=np.float32) for a in zip(*random.sample(replay_buffer,batch_size))]
# 下一个状态,由此得到的y为真实值
# 预测值与真实值的计算看不太懂
q_value=model(tf.constant(batch_next_state,dtype=tf.float32))
y=batch_reward+(gamma*tf.reduce_max(q_value,axis=1))*(1-batch_done)
with tf.GradientTape() as tape:
# loss=tf.losses.mean_squared_error(labels=y,predictions=tf.reduce_sum(
# model(tf.constant(batch_state))*tf.one_hot(batch_action,depth=2),axis=1))
loss=tf.losses.mean_squared_error(y,tf.reduce_sum(
model(tf.constant(batch_state))*to_categorical(batch_action,num_classes=2),axis=1))
grads=tape.gradient(loss,model.variables)
optimizer.apply_gradients(grads_and_vars=zip(grads,model.variables))

最终会出现一个窗口,平衡游戏不断进行。。。

上面注释部分因为tf.one_hot方法会报错。

tensorflow增强学习应用于一个小游戏的更多相关文章

  1. Pygame:编写一个小游戏 标签: pythonpygame游戏 2017-06-20 15:06 103人阅读 评论(0)

    大学最后的考试终于结束了,迎来了暑假和大四的漫长的"自由"假期.当然要自己好好"玩玩"了. 我最近在学习Python,本意是在机器学习深度学习上使用Python ...

  2. DirectX游戏开发——从一个小游戏開始

    本系列文章由birdlove1987编写,转载请注明出处. 文章链接: http://blog.csdn.net/zhurui_idea/article/details/26364129 写在前面:自 ...

  3. 使用PixiJS做一个小游戏

    PixiJS PixiJS使用WebGL,是一个超快的HTML5 2D渲染引擎.作为一个Javascript的2D渲染器,Pixi.js的目标是提供一个快速的.轻量级而且是兼任所有设备的2D库. 官方 ...

  4. js实现一个小游戏(飞翔的jj)

    js实现一个小游戏(飞翔的jj) 源代码+素材图片在我的仓库 <!DOCTYPE html> <html lang="en"> <head> & ...

  5. 通过一个小游戏开始接触Python!

    之前就一直嚷嚷着要找视频看学习Python,可是一直拖到今晚才开始....好好加油吧骚年,坚持不一定就能有好的结果,但是不坚持就一定是不好的!! 看着视频学习1: 首先,打开IDLE,在IDLE中新建 ...

  6. 【h5-egret】如何快速开发一个小游戏

    1.环境搭建 安装教程传送门:http://edn.egret.com/cn/index.php?g=&m=article&a=index&id=207&terms1_ ...

  7. c++学习笔记---03---从一个小程序说起2

    从一个小程序说起2 要求:编写一个程序,要求用户输入一串整数和任意数目的空格,这些整数必须位于同一行中,但允许出现在该行中的任何位置.当用户按下键盘上的"Enter"键时,数据输入 ...

  8. Egret白鹭开发微信小游戏程序跳转功能(由一个小游戏跳转到另一个小游戏)

    假设我们要实现的功能是从小游戏A跳转到小游戏B 对于小游戏A: (1)在platform.ts中添加代码如下: /** * 平台数据接口. * 由于每款游戏通常需要发布到多个平台上,所以提取出一个统一 ...

  9. c++学习笔记---02---从一个小程序说起

    从一个小程序说起 这一讲的主要目的是帮助大家在C语言的背景知识上与C++建立联系. 问题探索 问题:对一个整型数组求和. 要求:定义一个存储着 n 个元素的数组,要求用C语言完成这个任务. 赶紧的:大 ...

随机推荐

  1. 我说CMMI之四:CMMI的表示方法--转载

    版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/dylanren/article/deta ...

  2. python1-集合、函数(全局变量与局部变量)

    集合(set) # s=set('hello')# print(s)## s=set(['alex','alex','sb'])# print(s) # s={1,2,3,4,5,6} #添加# s. ...

  3. nginx第二天

    nginx配置文件 配置文件结构 全局配置(user.worker_processes.error_log.pid) events(网络连接相关,worker_connections) http(最重 ...

  4. Acwing-280-陪审团(背包dp?)

    链接: https://www.acwing.com/problem/content/282/ 题意: 在一个遥远的国家,一名嫌疑犯是否有罪需要由陪审团来决定. 陪审团是由法官从公民中挑选的. 法官先 ...

  5. b2b推广方式有哪些-

    b2b推广方式有哪些 老黄牛推广软件订做 Q:935744345 专业团队,高效推广

  6. 基于官方postgres docker镜像制作自己的镜像

    1.Dockerfile FROM library/postgres MAINTAINER wenbin.ouyang #初始化PostgreSQL ENV POSTGRES_USER root EN ...

  7. [pwnable.kr]Dragon

    0x00: dragon 是一个UAF漏洞的利用. UseAfterFree 是堆的漏洞利用的一种 简单介绍 https://www.owasp.org/index.php/Using_freed_m ...

  8. BZOJ 2669 Luogu P3160 [CQOI2012]局部极小值 (容斥原理、DP)

    题目链接 (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=2669 (luogu) https://www.luogu.org/prob ...

  9. 9.Python关键字(保留字)一览表

    保留字是 Python 语言中一些已经被赋予特定意义的单词,这就要求开发者在开发程序时,不能用这些保留字作为标识符给变量.函数.类.模板以及其他对象命名. Python 包含的保留字可以执行如下命令进 ...

  10. 工具类--BeanUtils----Bean转换工具

    package com.zhouyy.netBank.util; import java.beans.PropertyDescriptor; import java.lang.reflect.Fiel ...