[luogu4768] [NOI2018] 归程 (Dijkstra+Kruskal重构树)
[luogu4768] [NOI2018] 归程 (Dijkstra+Kruskal重构树)
题面
题面较长,这里就不贴了
分析
看到不能经过有积水的边,即不能经过边权小于一定值的边,我们想到了kruskal重构树。我们把边按海拔高度从大到小排序,然后建立一棵Kruskal重构树。
树上维护什么呢?我们除了在点上记录高度外,把最底层的点1~n的权值设为点i到1的最短路径长度,然后维护子树最小值。我们在Kruskal重构树上从v开始树上倍增,找到深度最浅的高度>=水位线的点x,这样x子树中的点都是开车可以到达的,而最小步行距离就是x子树中的点对应到原图上后,到点1的距离。
代码
//https://www.luogu.org/problem/P4768
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#include<cmath>
#define maxn 200000
#define maxm 400000
#define maxlogn 23
using namespace std;
typedef long long ll;
int t;
int n,m,q,k,s;
struct graph {
struct edge {
int from;
int to;
int next;
int len;
int height;
friend bool operator < (edge p,edge q){
return p.height>q.height;
}
}E[maxm*2+5];
int sz=1;
int head[maxn*2+5];
void clear(){
memset(head,0,sizeof(head));
sz=1;
}
void add_edge(int u,int v,int l,int h){
sz++;
E[sz].from=u;
E[sz].to=v;
E[sz].next=head[u];
E[sz].len=l;
E[sz].height=h;
head[u]=sz;
sz++;
E[sz].from=v;
E[sz].to=u;
E[sz].next=head[v];
E[sz].len=l;
E[sz].height=h;
head[v]=sz;
}
}G;
struct tree{
struct edge{
int from;
int to;
int next;
}E[(maxn+maxn)*2+5];
int head[maxn+maxn+5];
int sz=1;
void clear(){
memset(head,0,sizeof(head));
sz=1;
}
void add_edge(int u,int v){
sz++;
E[sz].from=u;
E[sz].to=v;
E[sz].next=head[u];
head[u]=sz;
sz++;
E[sz].from=v;
E[sz].to=u;
E[sz].next=head[v];
head[v]=sz;
}
}T;
struct heap_node{
ll dist;
int id;
heap_node(){
}
heap_node(int _id,ll _dist){
id=_id;
dist=_dist;
}
friend bool operator < (heap_node p,heap_node q){
return p.dist>q.dist;
}
};
int vis[maxn+5];
ll dist[maxn+5];
void dijkstra(int s){
memset(dist,0x3f,sizeof(dist));
memset(vis,0,sizeof(vis));
dist[s]=0;
priority_queue<heap_node>q;
q.push(heap_node(s,0));
while(!q.empty()){
int x=q.top().id;
q.pop();
if(vis[x]) continue;
vis[x]=1;
for(int i=G.head[x];i;i=G.E[i].next){
int y=G.E[i].to;
if(dist[y]>dist[x]+G.E[i].len){
dist[y]=dist[x]+G.E[i].len;
q.push(heap_node(y,dist[y]));
}
}
}
}
int newn=0;
int fa[maxn*2+5];
int find(int x){
if(fa[x]==x) return x;
else return fa[x]=find(fa[x]);
}
int log2n;
int hi[maxn*2+5];
ll dmin[maxn*2+5];
int deep[maxn*2+5];
int anc[maxn*2+5][maxlogn+5];
void dfs(int x,int fa){
deep[x]=deep[fa]+1;
anc[x][0]=fa;
for(int i=1;i<=log2n;i++) anc[x][i]=anc[anc[x][i-1]][i-1];
for(int i=T.head[x];i;i=T.E[i].next){
int y=T.E[i].to;
if(y!=fa){
dfs(y,x);
dmin[x]=min(dmin[x],dmin[y]);
}
}
}
ll query(int x,int lim){
for(int i=log2n;i>=0;i--){
if(anc[x][i]!=0&&hi[anc[x][i]]>lim){
x=anc[x][i];
}
}
return dmin[x];
}
void kruskal(){//建出kruskal重构树
newn=n;
for(int i=1;i<=n*2;i++) fa[i]=i;
sort(G.E+2,G.E+1+G.sz);
for(int i=2;i<=G.sz;i++){
int x=G.E[i].from;
int y=G.E[i].to;
int fx=find(x);
int fy=find(y);
if(fx!=fy){
newn++;
T.add_edge(fx,newn);
T.add_edge(fy,newn);
fa[fx]=newn;
fa[fy]=newn;
hi[newn]=G.E[i].height;
}
}
log2n=log2(newn);
memset(dmin,0x3f,sizeof(dmin));
for(int i=1;i<=n;i++) dmin[i]=dist[i];
dfs(newn,0);
}
void ini(){
T.clear();
G.clear();
memset(anc,0,sizeof(anc));
memset(deep,0,sizeof(deep));
memset(dist,0x3f,sizeof(dist));
memset(vis,0,sizeof(vis));
memset(dmin,0x3f,sizeof(dmin));
}
int main() {
freopen("return.in","r",stdin);
freopen("return.out","w",stdout);
int u,v,l,a;
ll v0,p0;
ll lastans;
scanf("%d",&t);
while(t--){
scanf("%d %d",&n,&m);
lastans=0;
ini();
for(int i=1;i<=m;i++){
scanf("%d %d %d %d",&u,&v,&l,&a);
G.add_edge(u,v,l,a);
}
dijkstra(1);
kruskal();
scanf("%d %d %d",&q,&k,&s);
for(int i=1;i<=q;i++){
scanf("%lld",&v0);
v0=(v0+k*lastans-1)%n+1;
scanf("%lld",&p0);
p0=(p0+k*lastans)%(s+1);
lastans=query(v0,p0);
printf("%lld\n",lastans);
}
}
}
[luogu4768] [NOI2018] 归程 (Dijkstra+Kruskal重构树)的更多相关文章
- Luogu P4768 [NOI2018]归程(Dijkstra+Kruskal重构树)
P4768 [NOI2018]归程 题面 题目描述 本题的故事发生在魔力之都,在这里我们将为你介绍一些必要的设定. 魔力之都可以抽象成一个 \(n\) 个节点. \(m\) 条边的无向连通图(节点的编 ...
- P4768 [NOI2018]归程(kruskal 重构树)
洛谷P4768 [NOI2018]归程 LOJ#2718.「NOI2018」归程 用到 kruskal 重构树,所以先说这是个啥 显然,这和 kruskal 算法有关系 (废话 这个重构树是一个有点权 ...
- NOI2018归程(Kruskal重构树)
题目描述 本题的故事发生在魔力之都,在这里我们将为你介绍一些必要的设定. 魔力之都可以抽象成一个 n 个节点.m 条边的无向连通图(节点的编号从 1 至 n). 我们依次用 l,a 描述一条边的长度. ...
- NOI2018d1t1 归程 (dijkstra+kruskal重构树)
题意:给一张无向联通图,每条边有长度和高度,每次询问在高度大于p的边,从v点能到达的所有点到1号点的最短距离(强制在线) 首先dijkstra求出每个点到1号点的距离 易知:如果我按高度从高到低给边排 ...
- LOJ #2718. 「NOI2018」归程(Dijkstra + Kruskal重构树 + 倍增)
题意 给你一个无向图,其中每条边有两个值 \(l, a\) 代表一条边的长度和海拔. 其中有 \(q\) 次询问(强制在线),每次询问给你两个参数 \(v, p\) ,表示在 \(v\) 出发,能开车 ...
- NOI2018 D1T1 洛谷P4768 归程 (Kruskal重构树)
实际上是一个最短路问题,但加上了海拔这个条件限制,要在海拔<水位线p中找最短路. 这里使用Kruskal重构树,将其按海拔建成小根堆,我们就可以在树中用倍增找出他不得不下车的点:树中节点有两个权 ...
- 「NOI 2018」归程「Kruskal 重构树」
题解 Kruskal重构树:每次一条边连接两个集合,建一个新点,点权为该边边权:把这两个集合的根连向新点. 性质:(如果求的是最大生成树)叶子结点是图中实际结点:叶子到根路径上点权递减:两点间lca的 ...
- 【BZOJ5415&UOJ393】归程(Kruskal重构树,最短路)
题意:From https://www.cnblogs.com/Memory-of-winter/p/11628351.html 思路:先从1开始跑一遍dijkstra,建出kruskal重构树之后每 ...
- 【NOI 2018】归程(Kruskal重构树)
题面在这里就不放了. 同步赛在做这个题的时候,心里有点纠结,很容易想到离线的做法,将边和询问一起按水位线排序,模拟水位下降,维护当前的各个联通块中距离$1$最近的距离,每次遇到询问时输出所在联通块的信 ...
随机推荐
- 过采样算法之SMOTE
SMOTE(Synthetic Minority Oversampling Technique),合成少数类过采样技术.它是基于随机过采样算法的一种改进方案,由于随机过采样采取简单复制样本的策略来增加 ...
- 解决GitHub加载不出图片问题
解决方法: 复制 raw.githubusercontent.com 去 https://www.ipaddress.com 搜索,把给出的IP地址存储到 host 文件中: 如 199.232.28 ...
- Quick BI支持哪些数据源(配置操作篇)
Quick BI 潜心打造了核心技术底座(OLAP分析引擎),实现了SQL解析.SQL调度.SQL优化.查询加速等基础能力,支撑Quick BI的数据分析和查询加速.OLAP分析引擎包括数据源连接.数 ...
- @PathVariable注解使用
@PathVariable是spring3.0的一个新功能:接收请求路径中占位符的值 语法: @PathVariable("xxx")通过 @PathVariable 可以将URL ...
- Bugku 杂项 宽带信息泄露
宽带信息泄露 flag是宽带用户名 下载文件后用RouterPassView打开,搜索username即可
- B/S实现大视频上传
在公司做B/S 开发与维护三年啦, 对B/S架构的了解也是只知大概,对于这种基础知识还是很有必要理一理哒.趁空去网上查阅了资料,顺便整理一份笔记供以后查询. 一. B/S的概念 B/S(Brower/ ...
- 6.20校内考试整理——大美江湖&&腐草为萤&&锦鲤抄题解
先安利一下题目作者:一扶苏一 先看第一题: 这道题就是一道简单的模拟题,只要不管一开始的位置,模拟移动与格子对应的触发事件就行了.话不多说,看代码: #include<iostream> ...
- 实用工具/API
实用工具/API PNG图片无损压缩 在线给图片加水印 随机密码生成 随机头像生成 微博一键清理工具 CSS压缩 在线工具 免费虚拟主机 技术摘要 https://github.com/biezhi/ ...
- B - Sumdiv(第三周)
B - Sumdiv 题目链接:https://vjudge.net/contest/154063#problem/B 题意: 求A^B的所有约数(即因子)之和,并对其取模 9901再输出. 解题思路 ...
- [CSP-S模拟测试]:模板(ac)(线段树启发式合并)
题目描述 辣鸡$ljh\ NOI$之后就退役了,然后就滚去学文化课了.他每天都被$katarina$大神虐,仗着自己学过一些姿势就给$katarina$大神出了一道题.有一棵$n$个节点的以$1$号节 ...