Fansblog

Time Limit: 2000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 374 Accepted Submission(s): 107

Problem Description

Farmer John keeps a website called ‘FansBlog’ .Everyday , there are many people visited this blog.One day, he find the visits has reached P , which is a prime number.He thinks it is a interesting fact.And he remembers that the visits had reached another prime number.He try to find out the largest prime number Q ( Q < P ) ,and get the answer of Q! Module P.But he is too busy to find out the answer. So he ask you for help. ( Q! is the product of all positive integers less than or equal to n: n! = n * (n-1) * (n-2) * (n-3) *… * 3 * 2 * 1 . For example, 4! = 4 * 3 * 2 * 1 = 24 )

Input

First line contains an number T(1<=T<=10) indicating the number of testcases.

Then T line follows, each contains a positive prime number P (1e9≤p≤1e14)

Output

For each testcase, output an integer representing the factorial of Q modulo P.

Sample Input

1
1000000007

Sample Output

328400734

题意

给出一个质数p,每一次询问\(s!\%p,(s\text{为小于p的最大质数})\)。

题解

定理:\((p-1)!\equiv p-1 \space(\mod p)\),p 为质数。

并且,质数以ln分配。

所以,$ans \sum_{i=s+1}^{p-1}i\equiv p-1(\mod p) $

所以,$ ans\equiv p-1\sum_{i=s+1}{p-1}i{-1}(\mod p) $

代码

#include<bits/stdc++.h>
#define int long long
using namespace std;
int prime[10]={2,3,5,7,11,13,19,61,2333,24251};
long long M;
int Quick_Multiply(int a,int b,int c)
{
long long ans=0,res=a;
while(b)
{
if(b&1)
ans=(ans+res)%c;
res=(res+res)%c;
b>>=1;
}
return (int)ans;
}
int Quick_Power(int a,int b,int c)
{
int ans=1,res=a;
while(b)
{
if(b&1)
ans=Quick_Multiply(ans,res,c);
res=Quick_Multiply(res,res,c);
b>>=1;
}
return ans;
}
bool Miller_Rabin(int x)
{
int i,j,k;
int s=0,t=x-1;
if(x==2) return true;
if(x<2||!(x&1)) return false;
while(!(t&1))
{
s++;
t>>=1;
}
for(i=0;i<10&&prime[i]<x;++i)
{
int a=prime[i];
int b=Quick_Power(a,t,x);
for(j=1;j<=s;++j)
{
k=Quick_Multiply(b,b,x);
if(k==1&&b!=1&&b!=x-1)
return false;
b=k;
}
if(b!=1) return false;
}
return true;
}
signed main()
{
int T;
cin >> T;
while (T--){
int x;
int ans;
scanf("%lld",&x);
ans = x - 1;
int M = x;
while (Miller_Rabin(x-1) == 0) x--, ans = Quick_Multiply(ans, Quick_Power(x,M-2,M),M);
cout << ans << endl;
}
return 0;
}

2019 Multi-University Training Contest 3 T6 - Fansblog的更多相关文章

  1. 2019 Multi-University Training Contest 3 - 1006 - Fansblog - 打表 - 暴力

    http://acm.hdu.edu.cn/showproblem.php?pid=6608 题意:给一个比较大的质数P(1e14以内),求比它小的最大的质数Q(貌似保证存在的样子,反正我没判不存在) ...

  2. 2019 Nowcoder Multi-University Training Contest 4 E Explorer

    线段树分治. 把size看成时间,相当于时间 $l$ 加入这条边,时间 $r+1$ 删除这条边. 注意把左右端点的关系. #include <bits/stdc++.h> ; int X[ ...

  3. 2019 Nowcoder Multi-University Training Contest 1 H-XOR

    由于每个元素贡献是线性的,那么等价于求每个元素出现在多少个异或和为$0$的子集内.因为是任意元素可以去异或,那么自然想到线性基.先对整个集合A求一遍线性基,设为$R$,假设$R$中元素个数为$r$,那 ...

  4. HDU校赛 | 2019 Multi-University Training Contest 3

    2019 Multi-University Training Contest 3 http://acm.hdu.edu.cn/contests/contest_show.php?cid=850 100 ...

  5. 2019 Multi-University Training Contest 8

    2019 Multi-University Training Contest 8 C. Acesrc and Good Numbers 题意 \(f(d,n)\) 表示 1 到 n 中,d 出现的次数 ...

  6. 2019 Multi-University Training Contest 7

    2019 Multi-University Training Contest 7 A. A + B = C 题意 给出 \(a,b,c\) 解方程 \(a10^x+b10^y=c10^z\). tri ...

  7. 2019 Multi-University Training Contest 1

    2019 Multi-University Training Contest 1 A. Blank upsolved by F0_0H 题意 给序列染色,使得 \([l_i,r_i]\) 区间内恰出现 ...

  8. 2019 Multi-University Training Contest 2

    2019 Multi-University Training Contest 2 A. Another Chess Problem B. Beauty Of Unimodal Sequence 题意 ...

  9. 2019 Multi-University Training Contest 5

    2019 Multi-University Training Contest 5 A. fraction upsolved 题意 输入 \(x,p\),输出最小的 \(b\) 使得 \(bx\%p&l ...

随机推荐

  1. 为应用创建多个独立python运行环境

    在开发Python应用程序的时候,系统安装的Python3只有一个版本:3.4.所有第三方的包都会被pip安装到Python3的site-packages目录下. 如果我们要同时开发多个应用程序,那这 ...

  2. vultr vps 开启BBR加速 (CentOS 7)

    上个月买的vultr的vps 感觉看视频还是比较慢的 于是上网找教程开启BBR加速 在这里记录一下 以后可能会用到 BBR 是 Google 提出的一种新型拥塞控制算法,可以使 Linux 服务器显著 ...

  3. Spring Gateway从入门到精通

    1.Spring Gateway过滤器详解 2.Spring Gateway之Predicate详解 3.spring cloud gateway自定义过滤器 4.Spring Cloud Gatew ...

  4. 使用rsync在linux(服务端)与windows(客户端)之间同步

    说明: 1.RsyncServer服务端 系统:CentOS 6.8 IP地址:192.168.247.141 2.Rsync客户端 系统:Windows10 实现目的: Rsync客户端同步服务端/ ...

  5. iOS模拟器发生了崩溃,去哪找Crash Log

    iOS模拟器发生了崩溃,可以在如下地方找到崩溃日志: ~/Library/Logs/DiagnosticReports/

  6. CentOS添加使用

    在本机安装虚拟机,虚拟机安装CentSO.也可以装双系统,双系统问题更多 环境:win7 64 位 1.查看电脑是否可虚拟化(在百度查) 2.查看电脑是否打开虚拟机设置,如果没有,百度如何开启 打开虚 ...

  7. Vue源码解读-构造函数

    src/core/instance/index.js此文件主要实现了Vue初始化 // 引入模块 import { initMixin } from './init' import { stateMi ...

  8. DAX/PowerBI系列 - 累计总计(Cumulative Total, Running Total)

    DAX/PowerBI系列 - 累计总计(Cumulative Total) 2017/07/23 更新:B列公式(见最后) 2019/08/08 更新:在可视化数据的时候,一定要选择日期维度的日期列 ...

  9. Quartz的job中注入的services接口为空的解决办法

    自己重新定义一个类继承AdaptableJobFactory类 public class JobFactory extends AdaptableJobFactory { @Autowired pri ...

  10. 对Elastic集群内部配置TLS加密通信及身份验证

    1.介绍 官方宣布从6.8和7.1开始,免费提供多项安全功能.其中包括tls加密通信,基于角色访问控制等功能. 可以使用企业CA证书来完成这一步骤,但是一般情况下,我们可以通过elasticsearc ...