codeforces#403—B题(二分,三分)
B. The Meeting Place Cannot Be Changed
time limit per test
5 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output
The main road in Bytecity is a straight line from south to north. Conveniently, there are coordinates measured in meters from the southernmost building in north direction.
At some points on the road there are n friends, and i-th of them is standing at the point xi meters and can move with any speed no greater than vi meters per second in any of the two directions along the road: south or north.
You are to compute the minimum time needed to gather all the n friends at some point on the road. Note that the point they meet at doesn't need to have integer coordinate.
Input
The first line contains single integer n (2 ≤ n ≤ 60 000) — the number of friends.
The second line contains n integers x1, x2, ..., xn (1 ≤ xi ≤ 109) — the current coordinates of the friends, in meters.
The third line contains n integers v1, v2, ..., vn (1 ≤ vi ≤ 109) — the maximum speeds of the friends, in meters per second.
Output
Print the minimum time (in seconds) needed for all the n friends to meet at some point on the road.
Your answer will be considered correct, if its absolute or relative error isn't greater than 10 - 6. Formally, let your answer be a, while jury's answer be b. Your answer will be considered correct if holds.
Examples
Input
3
7 1 3
1 2 1
Output
2.000000000000
Input
4
5 10 3 2
2 3 2 4
Output
1.400000000000
Note
In the first sample, all friends can gather at the point 5 within 2 seconds. In order to achieve this, the first friend should go south all the time at his maximum speed, while the second and the third friends should go north at their maximum speeds.
题意:在x轴上有很多人,这些人都有对应的最大移动速度,想要使所有人运动至同一点,求出最小运动时间。
/*
当然也可以三分,这里采用另一种二分时间的方法
耗费某一个时间时,求出最南边可以到达的点及最北端可以到达的点
当有交点时,说明都可以到达
*/
#include<bits/stdc++.h>
using namespace std;
const int MAXN=60000+100;
const double EPS=1e-6;
int x[MAXN],v[MAXN];
int main()
{
// freopen("data.in","r",stdin);
int n;
cin>>n;
int xss=0x3f3f3f3f,xnn=-1;
for(int i=0;i<n;i++){
cin>>x[i];
xss=min(xss,x[i]);
xnn=max(xnn,x[i]);
}
int vmin=0x3f3f3f3f,vmax=-1;
for(int i=0;i<n;i++){
cin>>v[i];
vmin=min(vmin,v[i]);
vmax=max(vmax,v[i]);
}
double l=0,r=(xnn-xss)*1.0/2/vmin+1;//初始化l与r缩小搜索范围,也可不初始化,直接给r一个大数即可
double res=0;
double mid;
double tmp;
while(fabs(r-l)>=EPS){
mid=(l+r)/2.0;
//cout<<fixed<<setprecision(6)<<mid<<endl;
double xn=0x3f3f3f3f,xs=-1;
for(int i=0;i<n;i++){
xs=max(xs,x[i]*1.0-v[i]*mid);
xn=min(xn,x[i]*1.0+v[i]*mid);
}
if(xn>xs){
r=mid;
}
else{
l=mid;
}
}
cout<<fixed<<setprecision(12)<<mid<<endl; }
codeforces#403—B题(二分,三分)的更多相关文章
- 第二次组队赛 二分&三分全场
网址:CSUST 7月30日(二分和三分) 这次的比赛是二分&三分专题,说实话以前都没有接触过二分,就在比赛前听渊神略讲了下.......不过做着做着就对二分熟悉了,果然做题是学习的好方法啊~ ...
- Codeforces VP/补题小记 (持续填坑)
Codeforces VP/补题小记 1149 C. Tree Generator 给你一棵树的括号序列,每次交换两个括号,维护每次交换之后的直径. 考虑括号序列维护树的路径信息和,是将左括号看做 ...
- [Codeforces 1199C]MP3(离散化+二分答案)
[Codeforces 1199C]MP3(离散化+二分答案) 题面 给出一个长度为n的序列\(a_i\)和常数I,定义一次操作[l,r]可以把序列中<l的数全部变成l,>r的数全部变成r ...
- codeforces 578c - weekness and poorness - 三分
2017-08-27 17:24:07 writer:pprp 题意简述: • Codeforces 578C Weakness and poorness• 给定一个序列A• 一个区间的poornes ...
- Codeforces Gym100543B 计算几何 凸包 线段树 二分/三分 卡常
原文链接https://www.cnblogs.com/zhouzhendong/p/CF-Gym100543B.html 题目传送门 - CF-Gym100543B 题意 给定一个折线图,对于每一条 ...
- Codeforces Round #371 (Div. 2) D. Searching Rectangles 交互题 二分
D. Searching Rectangles 题目连接: http://codeforces.com/contest/714/problem/D Description Filya just lea ...
- Codeforces Round #403 (Div. 2) B 三分 C dfs
B. The Meeting Place Cannot Be Changed time limit per test 5 seconds memory limit per test 256 megab ...
- Codeforces 1104 D. Game with modulo-交互题-二分-woshizhizhang(Codeforces Round #534 (Div. 2))
D. Game with modulo time limit per test 1 second memory limit per test 256 megabytes input standard ...
- CodeForces - 1059D——二分/三分
题目 题目链接 简单的说,就是作一个圆包含所有的点且与x轴相切,求圆的最小半径 方法一 分析:求最小,对半径而言肯定满足单调性,很容易想到二分.我们二分半径,然后由于固定了与X轴相切,我们对于每一个点 ...
随机推荐
- for循环语句的用法
1.for(int i : index){}用法[又称是foreach用法]: 比如: public class Test { public static void main(String[] arg ...
- Android事件监听(二)——点击鼠标事件
Button.ImageButton事件监听(setOnClickListener) 方法一:通过匿名内部类实现 代码如下: package com.note.demo2; import androi ...
- 面试宝典:25个最经典的JavaScript面试题及答案
1.使用 typeof bar === "object" 来确定 bar 是否是对象的潜在陷阱是什么?如何避免这个陷阱? 尽管 typeof bar === "objec ...
- C++中多态的概念和意义
1,函数重写回顾: 1,父类中被重写的函数依然会继承给子类: 2,子类中重写的函数将覆盖父类中的函数: 1,重写父类当中提供的函数是因为父类当中提供的这个函数版本不能满足我们的需求,因此我们要重写: ...
- Python基础数据类型str字符串
3.3字符串str ' ' 0 切片选取 [x:y] 左闭右开区间 [x:y:z] 选取x到y之间 每隔z选取一次(选取x,x+z,....) z为正 索引位置:x在y的左边 z为负 索引位置:x在y ...
- python3的base64编解码
使用python3的base64编解码实现字符串的简易加密解密 引言: 在一些项目中,接口的报文是通过base64加密传输的,所以在进行接口自动化时,需要对所传的参数进行base64编码,对拿到的响应 ...
- .net core 调用webservice
原文:.net core 调用webservice 1.点击core项目添加链接的服务 2.键入对应的webservice地址,下载对应的代理服务 4.由于.net core 代理类只支持异步方法 ...
- java判断一个单向链表是否有环路
今天刷LeetCode刷到一道这样的题,详情参见(https://leetcode-cn.com/problems/linked-list-cycle/) ADT: class ListNode { ...
- vue.js(2)--v-cloak v-text v-html
v-cloak v-text v-html的使用 (1)实例 <!DOCTYPE html> <html lang="en"> <head> ...
- java面试(反射)05
1.什么是反射 JAVA反射机制是在运行状态中,对于任意一个类,都能够获取这个类的所有属性和方法:对于任意一个对象,都能够调用它的任意一个方法和属性:这种动态获取类信息以及动态调用对象内容就称为jav ...