题意

  有 $a$ 个 $0$,$b$ 个 $1$,$c$ 个 $2$,$d$ 个 $3$,求有多少种长度为 $n$ 且不包含 $0123$ 这个子串的字符串个数。

  $n\le 1000,\space a+b+c+d\le 500$

题解

方法1 推式子卷积

方法2 容斥

传送门

讲得很清楚,这里不再赘述

【TJOI 2019】唱、跳、rap和篮球的更多相关文章

  1. [bzoj5510]唱跳rap和篮球

    显然答案可以理解为有(不是仅有)0对情况-1对情况+2对情况-- 考虑这个怎么计算,先计算这t对情况的位置,有c(n-3t,t)种情况(可以理解为将这4个点缩为1个,然后再从中选t个位置),然后相当于 ...

  2. 将Android手机无线连接到Ubuntu实现唱跳Rap

    您想要将Android设备连接到Ubuntu以传输文件.查看Android通知.以及从Ubuntu桌面发送短信 – 你会怎么做?将文件从手机传输到PC时不要打电话给自己:使用GSConnect就可以. ...

  3. [TJOI2019]唱、跳、rap和篮球_生成函数_容斥原理_ntt

    [TJOI2019]唱.跳.rap和篮球 这么多人过没人写题解啊 那我就随便说说了嗷 这题第一步挺套路的,就是题目要求不能存在balabala的时候考虑正难则反,要求必须存在的方案数然后用总数减,往往 ...

  4. [TJOI2019]唱、跳、rap和篮球——NTT+生成函数+容斥

    题目链接: [TJOI2019]唱.跳.rap和篮球 直接求不好求,我们考虑容斥,求出至少有$i$个聚集区间的方案数$ans_{i}$,那么最终答案就是$\sum\limits_{i=0}^{n}(- ...

  5. [luogu5339] [TJOI2019]唱、跳、rap和篮球(容斥原理+组合数学)(不用NTT)

    [luogu5339] [TJOI2019]唱.跳.rap和篮球(容斥原理+组合数学)(不用NTT) 题面 略 分析 首先考虑容斥,求出有i堆人讨论的方案. 可以用捆绑法,把每堆4个人捆绑成一组,其他 ...

  6. 「TJOI2019」唱、跳、rap 和篮球 题解

    题意就不用讲了吧-- 鸡你太美!!! 题意: 有 \(4\) 种喜好不同的人,分别最爱唱.跳. \(rap\).篮球,他们个数分别为 \(A,B,C,D\) ,现从他们中挑选出 \(n\) 个人并进行 ...

  7. [TJOI2019]唱,跳,rap,篮球(生成函数,组合数学,NTT)

    算是补了个万年大坑了吧. 根据 wwj 的题解(最准确),设一个方案 \(S\)(不一定合法)的鸡你太美组数为 \(w(S)\). 答案就是 \(\sum\limits_{S}[w(S)=0]\). ...

  8. 【题解】Luogu P5339 [TJOI2019]唱、跳、rap和篮球

    原题传送门 这题zsy写的是\(O(n^2)\),还有NTT\(O(n^2\log n)\)的做法.我的是暴力,\(O(\frac{a b n}{4})\),足够通过 考虑设\(f(i)\)表示序列中 ...

  9. [TJOI2019]唱、跳、rap和篮球

    嘟嘟嘟 TJ律师函警告 20分暴力比较好拿,因为每一种学生可以理解为无限多,那么总方案数就是\(C_{n} ^ {4}\),然后我们枚举至少讨论cxk的有几组,容斥即可. 需要注意的是,容斥的时候还要 ...

随机推荐

  1. 奶牛渡河(dp)

    奶牛渡河 时间限制: 1 Sec  内存限制: 128 MB提交: 36  解决: 27[提交][状态][讨论版][命题人:外部导入][Edit] [TestData] [同步数据] 题目描述 Far ...

  2. golang(11) 反射用法详解

    原文链接:http://www.limerence2017.com/2019/10/14/golang16/ 反射是什么 反射其实就是通过变量动态获取其值和类型的一种技术,有些语言是支持反射的比如py ...

  3. 让nginx 的ssi支持include相对路径

    好久没接触nginx了,今天帮同事解决一个客户的问题,顺便记录下:version : nginx-1.6.2问题描述:客户的files.shtml里面include一个网站的头部文件( <!–# ...

  4. gin框架教程三:JWT的使用

    JWT介绍 JWT (JSON Web Token) 是一种规范.这个规范允许我们使用JWT在用户和服务器之间安全传递信息. JWT的组成: jwt分3个部分,Header 头部.Payload 载荷 ...

  5. subprocess.call(cmd, shell=True)

    1.使用方法 subprocess.call() 执行由参数提供的命令. 我们可以用数组作为参数运行命令,也可以用字符串作为参数运行命令(通过设置参数shell=True) 注意,参数shell默认为 ...

  6. MessageBox显示位置

    假设存在2个窗口类CImDlg与CChatDlg,如果希望MessageBox跟随CChatDlg,方法是 CChatDlg *pDlg = xxx; pDlg->MessageBox();

  7. (5.1)mysql高可用系列——高可用架构方案概述

    关键词:mysql高可用概述,mysql高可用架构 常用高可用方案 20190918 现在业内常用的MySQL高可用方案有哪些?目前来说,用的比较多的开源方案分内置高可用与外部实现,内置高可用有如下: ...

  8. TCP/IP 物理层卷二 -- 交换技术

    一.概念 交换技术是指各台主机之间.各通信设备之间或者主机和通信设备之间(简单理解:你的PC和我的PC之间.你的PC和我的路由器.路由器之间)为交换信息所采用的的数据格式和交换装置的方式. 二.交换技 ...

  9. Intel Driver and Support Assistant 安装失败

    Intel Driver and Support Assistant 以下简称 Intel DSA. Intel DSA 依赖 Microsoft Visual C++ 2015-2019 Redis ...

  10. 基于 Vue.js 2.0 酷炫自适应背景视频登录页面的设计『转』

    本文讲述如何实现拥有酷炫背景视频的登录页面,浏览器窗口随意拉伸,背景视频及前景登录组件均能完美适配,背景视频可始终铺满窗口,前景组件始终居中,视频的内容始终得到最大限度的保留,可以得到最好的视觉效果. ...