Description

方伯伯在自己的农田边散步,他突然发现田里的一排玉米非常的不美。
这排玉米一共有N株,它们的高度参差不齐。
方伯伯认为单调不下降序列很美,所以他决定先把一些玉米拔高,再把破坏美感的玉米拔除掉,使得剩下的玉米的高度构成一个单调不下降序列。
方伯伯可以选择一个区间,把这个区间的玉米全部拔高1单位高度,他可以进行最多K次这样的操作。拔玉米则可以随意选择一个集合的玉米拔掉。
问能最多剩多少株玉米,来构成一排美丽的玉米。

Input

第1行包含2个整数n,K,分别表示这排玉米的数目以及最多可进行多少次操作。
第2行包含n个整数,第i个数表示这排玉米,从左到右第i株玉米的高度ai。

Output

输出1个整数,最多剩下的玉米数。

Sample Input

3 1
2 1 3

Sample Output

3

HINT

1 < N < 10000,1 < K ≤ 500,1 ≤ ai ≤5000

结论:把每次揠苗操作的右端点都设为n一定最优

感性理解:如果右端点不是n,那么后面的元素相对与前面的元素就下降了多个单位,最终因低于前面元素而被删除,不能最优。

设$dp[i][j]$为到第i个位置拔了j次的最大长度,易得转移为:

$dp[i][j]=max\left\{dp[k][p]+1\right\},a[k]+p \le a[i]+j,p \le j,k<i$

如果暴力枚举转移的话复杂度为$O(n^2 k^2)$,显然不可接受

我们其实只需要找满足条件的最大的$dp[k][p]$,开一个权值树状数组边查询边更新就好了

不要忘了树状数组下标不能为0,更新时需要把j+1

#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
const int N=;
int n,K,a[N],maxx;
int c[N][N];
int dp[N][],ans;
int lb(int x)
{
return x&-x;
}
void update(int x,int y,int val)
{
for(int i=x;i<=maxx;i+=lb(i))
for(int j=y;j<=K+;j+=lb(j))
c[i][j]=max(c[i][j],val);
}
int query(int x,int y)
{
int res=;
for(int i=x;i;i-=lb(i))
for(int j=y;j;j-=lb(j))
res=max(res,c[i][j]);
return res;
}
int main()
{
scanf("%d%d",&n,&K);
for(int i=;i<=n;i++)
scanf("%d",&a[i]),maxx=max(maxx,a[i]);
maxx+=K;
for(int i=;i<=n;i++)
{
for(int j=K;j>=;j--)
{
dp[i][j]=query(a[i]+j,j+)+;
update(a[i]+j,j+,dp[i][j]);
ans=max(ans,dp[i][j]);
}
}
cout<<ans<<endl;
return ;
}

[SCOI2014]方伯伯的玉米田 题解(树状数组优化dp)的更多相关文章

  1. BZOJ3594 [Scoi2014]方伯伯的玉米田 【树状数组优化dp】

    题目链接 BZOJ3594 题解 dp难题总是想不出来,, 首先要观察到一个很重要的性质,就是每次拔高一定是拔一段后缀 因为如果单独只拔前段的话,后面与前面的高度差距大了,不优反劣 然后很显然可以设出 ...

  2. 洛谷P3287 [SCOI2014]方伯伯的玉米田(树状数组)

    传送门 首先要发现,每一次选择拔高的区间都必须包含最右边的端点 为什么呢?因为如果拔高了一段区间,那么这段区间对于它的左边是更优的,对它的右边会更劣,所以我们每一次选的区间都得包含最右边的端点 我们枚 ...

  3. 2019.03.28 bzoj3594: [Scoi2014]方伯伯的玉米田(二维bit优化dp)

    传送门 题意咕咕咕 思路:直接上二维bitbitbit优化dpdpdp即可. 代码: #include<bits/stdc++.h> #define N 10005 #define K 5 ...

  4. bzoj 3594: [Scoi2014]方伯伯的玉米田 dp树状数组优化

    3594: [Scoi2014]方伯伯的玉米田 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 314  Solved: 132[Submit][Sta ...

  5. bzoj 3594: [Scoi2014]方伯伯的玉米田

    3594: [Scoi2014]方伯伯的玉米田 Time Limit: 60 Sec  Memory Limit: 128 MB Submit: 1399  Solved: 627 [Submit][ ...

  6. 【题解】Music Festival(树状数组优化dp)

    [题解]Music Festival(树状数组优化dp) Gym - 101908F 题意:有\(n\)种节目,每种节目有起始时间和结束时间和权值.同一时刻只能看一个节目(边界不算),在所有种类都看过 ...

  7. 【题解】ARC101F Robots and Exits(DP转格路+树状数组优化DP)

    [题解]ARC101F Robots and Exits(DP转格路+树状数组优化DP) 先删去所有只能进入一个洞的机器人,这对答案没有贡献 考虑一个机器人只能进入两个洞,且真正的限制条件是操作的前缀 ...

  8. HDU 6240 Server(2017 CCPC哈尔滨站 K题,01分数规划 + 树状数组优化DP)

    题目链接  2017 CCPC Harbin Problem K 题意  给定若干物品,每个物品可以覆盖一个区间.现在要覆盖区间$[1, t]$. 求选出来的物品的$\frac{∑a_{i}}{∑b_ ...

  9. Codeforces 946G Almost Increasing Array (树状数组优化DP)

    题目链接   Educational Codeforces Round 39 Problem G 题意  给定一个序列,求把他变成Almost Increasing Array需要改变的最小元素个数. ...

随机推荐

  1. SpringMVC·form表单Date类型问题导致的400问题

    问题描述 前端传yyyy-MM-dd hh:mm:ss格式的时间其实是String类型导致JavaBean中的Date类型Setter报错,从而导致api请求400. 问题解决 我的解决方式: 在对应 ...

  2. Red Hat Enterprise Linux 7.x新特性

    Red Hat Enterprise Linux 7.x新特性 RHEL7新特性简介 1.      RHEL7目前支持架构 64-bit AMD.64-bit Intel.IBM POWER.IBM ...

  3. What size do you use for varchar(MAX) in your parameter declaration?

    What size do you use for varchar(MAX) in your parameter declaration? In this case you use -1. See al ...

  4. appium 链接真机

    1. 安装驱动 说明:如果驱动装不上,可以使用第三方的工具去安装.(一般来说还是用第三方) 这里推荐锤子科技的HandShaker, 地址:http://www.smartisan.com/apps/ ...

  5. dubbo系列学习好文章

    1. dubbo入门学习(一)-----分布式基础理论.架构发展以及rpc.dubbo核心概念 https://www.cnblogs.com/alimayun/p/10982650.html 2. ...

  6. HTML5: HTML5 Geolocation(地理定位)

    ylbtech-HTML5: HTML5 Geolocation(地理定位) 1.返回顶部 1. HTML5 Geolocation(地理定位) HTML5 Geolocation(地理定位)用于定位 ...

  7. 关于sql中日期操作

    select * from account where  DAYOFWEEK('2019-11-30') =7 limit 10 DAYOFWEEK对应结果: 周日:1 周一:2 周二:3 周三:4 ...

  8. 查看.Net Framework的版本(PC和WinCE)

    一.在电脑上查看.Net Framework的版本 (1)第一步: 打开“我的电脑“,在地址栏输入 %systemroot%\Microsoft.NET\Framework 第二步:从列出来的文件夹中 ...

  9. ORA-13639: The CURRENT operation was interrupted because it timed OUT

    该错误是由于SQL Tune Job执行超时导致,默认“Time Limit"是3600秒,即一个小时.DECLARE   l_sql_tune_task_id CLOB; BEGIN   ...

  10. Eclipes更改字体颜色

    有图有真像 更改字体大小