题目描述

给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数。

输入输出格式

输入格式:

输入文件名为factor.in。

共一行,包含5 个整数,分别为 a ,b ,k ,n ,m,每两个整数之间用一个空格隔开。

输出格式:

输出共1 行,包含一个整数,表示所求的系数,这个系数可能很大,输出对10007 取模后的结果。

输入输出样例

输入样例#1:

  1. 1 1 3 1 2
输出样例#1:

  1. 3

说明

【数据范围】

对于30% 的数据,有 0 ≤k ≤10 ;

对于50% 的数据,有 a = 1,b = 1;

对于100%的数据,有 0 ≤k ≤1,000,0≤n, m ≤k ,且n + m = k ,0 ≤a ,b ≤1,000,000。

noip2011提高组day2第1题

代码

  1. #include<iostream>
  2. #include<cstdio>
  3. #include<cstring>
  4. #include<algorithm>
  5. #define ll long long
  6. using namespace std;
  7. int h[][],a,b,k,n,m,Max=;
  8. ll ans;
  9.  
  10. ll pow(ll x,ll n,int Max){
  11. ll res=;
  12. while(n>){
  13. if(n&) res=(res*x)%Max;
  14. x=(x*x)%Max;
  15. n>>=;
  16. }
  17. return res%Max;
  18. }
  19.  
  20. int main(){
  21. scanf("%d%d%d%d%d",&a,&b,&k,&n,&m);
  22. for(int i=;i<=;i++){
  23. h[i][i]=h[i][]=;
  24. }
  25. for(int i=;i<=;i++){
  26. for(int j=;j<=i;j++){
  27. h[i][j]=(h[i-][j]+h[i-][j-])%Max;
  28. }
  29. }
  30. ans=h[k+][m+];
  31.  
  32. ans=(ans*(pow(a,n,Max)*pow(b,m,Max)))%Max;
  33. cout<<ans<<endl;
  34. return ;
  35. }

杨辉三角形多项式定理看这里:http://wenku.baidu.com/link?url=c032QL7g165FSQy5GiSPGUViuY3Xc1JuoQ5fI0HQDt0X_OjZ6jlWD2iEt5vJILw6NzD0ribDTVCC96de7HInt5dj53aQJIJH-caUUEh6aai

转载:

杨辉三角形与快速幂的结合运用,具体就是

用杨辉三角算出(x+y)^k中某项的系数再乘以各自a^k乘以b^k的数积。

唯一的注意点是杨辉三角形的层数是k+1,数组要多开一层

洛谷 P1313 计算系数 Label:杨辉三角形 多项式计算的更多相关文章

  1. 【题解】洛谷P1313 [NOIP2011TG]计算系数(组合+二次项展开)

    洛谷P1313:https://www.luogu.org/problemnew/show/P1313 思路 本题就是考查二次项展开 根据定理有:(ax+by)k=∑ki=0Cik*aibk-ixiy ...

  2. 洛谷P1313 计算系数【快速幂+dp】

    P1313 计算系数 题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别 ...

  3. 洛谷 P1313 计算系数 解题报告

    P1313 计算系数 题目描述 给定一个多项式\((by+ax)^k\),请求出多项式展开后\(x^n*y^m\)项的系数. 输入输出格式 输入格式: 共一行,包含5个整数,分别为\(a,b,k,n, ...

  4. 洛谷P1313 计算系数

    P1313 计算系数 题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别 ...

  5. 洛谷P1313 [NOIP2011提高组Day2T1]计算系数

    P1313 计算系数 题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别 ...

  6. 【洛谷p1313】计算系数

    (%%%hmr) 计算系数[传送门] 算法呀那个标签: (越来越懒得写辽)(所以今天打算好好写一写) 首先(ax+by)k的计算需要用到二项式定理: 对于(x+y)k,有第r+1项的系数为:Tr+1= ...

  7. 洛谷 P3711 - 仓鼠的数学题(多项式)

    洛谷题面传送门 提供一种不太一样的做法. 假设要求的多项式为 \(f(x)\).我们考察 \(f(x)-f(x-1)\),不难发现其等于 \(\sum\limits_{i=0}^na_ix^i\) 考 ...

  8. 洛谷P4233 射命丸文的笔记 【多项式求逆】

    题目链接 洛谷P4233 题解 我们只需求出总的哈密顿回路个数和总的强联通竞赛图个数 对于每条哈密顿回路,我们统计其贡献 一条哈密顿回路就是一个圆排列,有\(\frac{n!}{n}\)种,剩余边随便 ...

  9. 【数论】洛谷P1313计算系数

    题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别为 a ,b ,k , ...

随机推荐

  1. Balanced Teams (USACO Jan Bronze 2014)

    既然是bronze,毫无压力的AC了. 就是个深搜,当然加个剪枝--最后一个组不用搜. 恩可以一个一个组分层次dfs,这样会跑得飞起~~也不容易错 #include <cstdio> in ...

  2. 发个题目坑 二模03day1

    1.数列(seq2.pas/c/cpp) 题目描述 一个数列定义如下:f(1) = 1,f(2) = 1,f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7.给定 A ...

  3. 【OpenStack】OpenStack系列15之OpenStack高可用详解

    高可用 概念 级别 陈本 如何实现 分类 Openstack的HA 虚拟机的HA 虚拟机HA 比较 应用级别HA,Heat的HA模板   组件的HA 示意图 Mysql的HA 三种方式之一——主从同步 ...

  4. 《转》VS2012发布网站详细步骤

    本文转载自MannyGuo 如果给您带来不便请联系博主 1.打开你的VS2012网站项目,右键点击项目>菜单中 重新生成一下网站项目:再次点击右键>发布: 2.弹出网站发布设置面板,点击& ...

  5. Group Shifted Strings

    Given a string, we can "shift" each of its letter to its successive letter, for example: & ...

  6. discuz插件开发新手入门 超详细

    作为一个新手,目前也是刚刚玩转discuz的插件功能,好东西不敢独享,就拿出来大家一起分享入门的过程.现在网上很多关于discuz的插件教程都是很简单的教程,原因可能是这个东西是商业化的东西,本着分享 ...

  7. decltype

    在C++中,decltype作为操作符,用于查询表达式的数据类型.decltype在C++11标准制定时引入,主要是为泛型编程而设计,以解决泛型编程中,由于有些类型由模板参数决定,而难以(甚至不可能) ...

  8. .NET的堆和栈01,基本概念、值类型内存分配

    当我们对.NET Framework的一些基本面了解之后,实际上,还是很有必要了解一些更底层的知识.比如.NET Framework是如何进行内存管理的,是如何垃圾回收的......这样,我们才能写出 ...

  9. SQL中行列转换Pivot

    --建表 ),课程 ),分数 int) --插入数据 ) ) ) ) ) ) 1.静态行转列(确定有哪些列) select 姓名, end)语文, end)数学, end)物理 from tb gro ...

  10. Ubuntu配置java环境变量

    参考文章: http://www.cnblogs.com/BigIdiot/archive/2012/03/26/2417547.html 方法1:修改/etc/profile 文件所有用户的 she ...