简介

k近邻算法是数据分类一种常用的算法,属于监督学习算法的一类,它采用不同特征值之的距离进行分类。K近邻算法具有精度高、对异常值不敏感、无数据输入假定的优点,缺点是计算复杂度高、空间复杂度高。适用于数值型和标称型数据的计算分类。

K近邻算法的一般流程包括:

  1. 收集数据
  2. 准备数据:距离计算所需要的数值,最好是结构化的数据
  3. 分析数据
  4. 训练算法:根据训练样本得到
  5. 测试算法:计算错误率
  6. 使用算法

Case

已知四个点,及其对应的分类。我们需要根据已有数据,判别未知点的分类。首先导入数据。

from numpy import *

def createDataSet():
<!--数据点-->
group = array([[1.0, 1.1], [1.0, 1.0], [0, 0], [0, 0.1]])
<!--点对应的分类-->
labels = ['A', 'A', 'B', 'B']
return group, labels

对未知点类别属性的判别执行以下的步骤

  1. 计算已知类别数据点和当前点之间的距离
  2. 按照距离递增排序
  3. 选取与当前点距离最小的k个点
  4. 确定前k个点所在类别的出现规律
  5. 返回前k个点出现频率最高的类别作为当前点的预测分类

下面是代码的具体实现

from numpy import *
import operator def createDataSet():
group = array([[1.0, 1.1], [1.0, 1.0], [0, 0], [0, 0.1]])
labels = ['A', 'A', 'B', 'B']
return group, labels def classfiy(inX, dataSet, labels, k):
# size of the dataSet array
dataSetSize = dataSet.shape[0]
<!--得到未知点和已知点的差值-->
diffMat = tile(inX, (dataSetSize, 1)) - dataSet
<!--差值平方-->
sqDiffMat = diffMat ** 2
<!--未知点和已知点距离的平方和-->
sqDistances = sqDiffMat.sum(axis=1)
<!--得到距离差数据-->
distances = sqDistances ** 0.5
<!--argsort得到index的sort,index可以关联labels的index-->
sortedDistanceIndicts = distances.argsort()
print
classCount = {} for i in range(k):
voteIlabel = labels[sortedDistanceIndicts[i]]
classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1 sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount data_set = createDataSet() result = classfiy([0, 0], data_set[0], data_set[1], 3)
<!--返回的结果是B-->
print result

K-近邻算法(KNN)的更多相关文章

  1. k近邻算法(KNN)

    k近邻算法(KNN) 定义:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. from sklearn.model_selection ...

  2. 机器学习(四) 分类算法--K近邻算法 KNN (上)

    一.K近邻算法基础 KNN------- K近邻算法--------K-Nearest Neighbors 思想极度简单 应用数学知识少 (近乎为零) 效果好(缺点?) 可以解释机器学习算法使用过程中 ...

  3. 一看就懂的K近邻算法(KNN),K-D树,并实现手写数字识别!

    1. 什么是KNN 1.1 KNN的通俗解释 何谓K近邻算法,即K-Nearest Neighbor algorithm,简称KNN算法,单从名字来猜想,可以简单粗暴的认为是:K个最近的邻居,当K=1 ...

  4. 机器学习(四) 机器学习(四) 分类算法--K近邻算法 KNN (下)

    六.网格搜索与 K 邻近算法中更多的超参数 七.数据归一化 Feature Scaling 解决方案:将所有的数据映射到同一尺度 八.scikit-learn 中的 Scaler preprocess ...

  5. k近邻算法(knn)的c语言实现

    最近在看knn算法,顺便敲敲代码. knn属于数据挖掘的分类算法.基本思想是在距离空间里,如果一个样本的最接近的k个邻居里,绝大多数属于某个类别,则该样本也属于这个类别.俗话叫,"随大流&q ...

  6. 《机器学习实战》---第二章 k近邻算法 kNN

    下面的代码是在python3中运行, # -*- coding: utf-8 -*- """ Created on Tue Jul 3 17:29:27 2018 @au ...

  7. 最基础的分类算法-k近邻算法 kNN简介及Jupyter基础实现及Python实现

    k-Nearest Neighbors简介 对于该图来说,x轴对应的是肿瘤的大小,y轴对应的是时间,蓝色样本表示恶性肿瘤,红色样本表示良性肿瘤,我们先假设k=3,这个k先不考虑怎么得到,先假设这个k是 ...

  8. 07.k近邻算法kNN

    1.将数据分为测试数据和预测数据 2.数据分为data和target,data是矩阵,target是向量 3.将每条data(向量)绘制在坐标系中,就得到了一系列的点 4.根据每条data的targe ...

  9. 机器学习随笔01 - k近邻算法

    算法名称: k近邻算法 (kNN: k-Nearest Neighbor) 问题提出: 根据已有对象的归类数据,给新对象(事物)归类. 核心思想: 将对象分解为特征,因为对象的特征决定了事对象的分类. ...

  10. 机器学习(1)——K近邻算法

    KNN的函数写法 import numpy as np from math import sqrt from collections import Counter def KNN_classify(k ...

随机推荐

  1. 【AR实验室】OpenGL ES绘制相机(OpenGL ES 1.0版本)

    0x00 - 前言 之前做一些移动端的AR应用以及目前看到的一些AR应用,基本上都是这样一个套路:手机背景显示现实场景,然后在该背景上进行图形学绘制.至于图形学绘制时,相机外参的解算使用的是V-SLA ...

  2. JAVA回调机制(CallBack)详解

    序言 最近学习java,接触到了回调机制(CallBack).初识时感觉比较混乱,而且在网上搜索到的相关的讲解,要么一言带过,要么说的比较单纯的像是给CallBack做了一个定义.当然了,我在理解了回 ...

  3. [译]ZOOKEEPER RECIPES-Leader Election

    选主 使用ZooKeeper选主的一个简单方法是,在创建znode时使用Sequence和Ephemeral标志.主要思想是,使用一个znode,比如"/election",每个客 ...

  4. CorelDRAW X8 如何破解激活(附国际版安装包+激活工具) 2016-12-15

    之前有位搞平面的好友“小瘦”说CDR X8无法破解,只能用X7.呃……呃……呃……好像是的 其实CDR8难激活主要在于一个点“没有离线激活了,只可以在线激活”,逆天不是专供逆向的,当然没能力去破解,这 ...

  5. Bringing Whoops Back to Laravel 5

    You might be missing the "prettier" Whoops error handler from Laravel 4. If so, here's how ...

  6. vmware上网的方式

    vmware上网设置 vmware虚拟机上网设置 我的一些心得,如下: 如何使vmware虚拟机中的操作系统能够上网? 第一种情况: 主机使用PPPOE拨号上网 方法一:NAT方式 1.先关闭虚拟机中 ...

  7. java时间

    Calendar.getInstance().getTime() 获取当前时间(包括星期和时区 CST China Standard Time):  Fri Jan 06 21:03:36 CST 2 ...

  8. 自己实现简单Spring Ioc

    IoC则是一种 软件设计模式,简单来说Spring通过工厂+反射来实现IoC. 原理简单说明: 其实就是通过解析xml文件,通过反射创建出我们所需要的bean,再将这些bean挨个放到集合中,然后对外 ...

  9. springmvc+mybatis+spring 整合 bootstrap html5

    A 调用摄像头拍照,自定义裁剪编辑头像 [新录针对本系统的视频教程,手把手教开发一个模块,快速掌握本系统]B 集成代码生成器 [正反双向](单表.主表.明细表.树形表,开发利器)+快速构建表单;  技 ...

  10. AFNetworking图片上传

    //上传图片 -(void)upLoadImage:(UIImage *)upImage { //创建管理 AFHTTPRequestOperationManager *manager = [AFHT ...