an introduction to conditional random fields
1.Structured prediction methods are essentially a combination of classification and graphical modeling.
2.They combine the ability of graphical models to compactly model multivariate data with the ability of classification methods to perform prediction using large sets of input features.
3.The input x is divided into feature vectors {x0,x1, . . . ,xT }. Each xs contains various information about the word at position s, such as its identity, orthographic features such as prefixes and suffixes, membership in domain-specific lexicons, and information in semantic databases such as WordNet.
4.CRFs are essentially a way of combining the advantages of discriminative classification and graphical modeling, combining the ability to compactly model multivariate outputs y with the ability to leverage a large number of input features x for prediction.
5.The difference between generative models and CRFs is thus exactly analogous to the difference between the naive Bayes and logistic regression classifiers. Indeed, the multinomial logistic regression model can be seen as the simplest kind of CRF, in which there is only one output variable.
6.The insight of the graphical modeling perspective is that a distribution over very many variables can often be represented as a product of local functions that each depend on a much smaller subset of variables. This factorization turns out to have a close connection to certain conditional independence relationships among the variables — both types of information being easily summarized by a graph. Indeed, this relationship between factorization, conditional independence, and graph structure comprises much of the power of the graphical modeling framework: the conditional independence viewpoint is most useful for designing models, and the factorization viewpoint is most useful for designing inference algorithms.
7.The principal advantage of discriminative modeling is that it is better suited to including rich, overlapping features.
8.In principle, it may not be clear why these approaches should be so different, because we can always convert between the two methods using Bayes rule. For example, in the naive Bayes model, it is easy to convert the joint p(y)p(x|y) into a conditional distribution p(y|x). Indeed, this conditional has the same form as the logistic regression model (2.9). And if we managed to obtain a “true” generative model for the data, that is, a distribution p∗(y,x) = p∗(y)p∗(x|y) from which the data were actually sampled, then we could simply compute the true p∗(y|x), which is exactly the target of the discriminative approach. But it is precisely because we never have the true distribution that the two approaches are different in practice. Estimating p(y)p(x|y) first, and then computing the resulting p(y|x) (the generative approach)yields a different estimate than estimating p(y|x) directly. In other words, generative and discriminative models both have the aim of stimating p(y|x), but they get there in different ways.
an introduction to conditional random fields的更多相关文章
- (转)Image Segmentation with Tensorflow using CNNs and Conditional Random Fields
Daniil's blog Machine Learning and Computer Vision artisan. About/ Blog/ Image Segmentation with Ten ...
- 论文翻译:Conditional Random Fields as Recurrent Neural Networks
Conditional Random Fields as Recurrent Neural Networks ICCV2015 cite237 1摘要: 像素级标注的重要性(语义分割 图像理解) ...
- Conditional Random Fields (CRF) 初理解
1,Conditional Random Fields
- 条件随机场 Conditional Random Fields
简介 假设你有冠西哥一天生活中的照片(这些照片是按时间排好序的),然后你很无聊的想给每张照片打标签(Tag),比如这张是冠西哥在吃饭,那张是冠西哥在睡觉,那么你该怎么做呢? 一种方法是不管这些照片的序 ...
- NLP —— 图模型(二)条件随机场(Conditional random field,CRF)
本文简单整理了以下内容: (一)马尔可夫随机场(Markov random field,无向图模型)简单回顾 (二)条件随机场(Conditional random field,CRF) 这篇写的非常 ...
- 条件随机场(conditional random field,CRF)模型初探
0. 引言 0x1:为什么会有条件随机场?它解决了什么问题? 在开始学习CRF条件随机场之前,我们需要先了解一下这个算法的来龙去脉,它是在什么情况下被提出的,是从哪个算法演进而来的,它又解决了哪些问题 ...
- 条件随机场conditional random field
主要翻译自http://blog.echen.me/2012/01/03/introduction-to-conditional-random-fields/,原作者是MIT的大神,加入了一些我自己的 ...
- 条件随机场Conditional Random Field-CRF入门级理解
条件随机场Conditional Random Field-CRF入门级理解 有向图与无向图模型 CRF模型是一个无向概率图模型,更宽泛地说,它是一个概率图模型.现实世界的一些问题可以用概率图模型 ...
- 马尔可夫随机场(Markov random fields) 概率无向图模型 马尔科夫网(Markov network)
上面两篇博客,解释了概率有向图(贝叶斯网),和用其解释条件独立.本篇将研究马尔可夫随机场(Markov random fields),也叫无向图模型,或称为马尔科夫网(Markov network) ...
随机推荐
- centos 关闭防火墙
在centos上搭建了个服务器,本机可以访问,局域网无法访问 解决方案:关闭防火墙 sudo systemctl stop firewalld.service 令人恼火的是stop iptables之 ...
- 【软件架构】IM架构设计(安卓版)
1. 架构总览 2. 模块介绍 2.1 协议封装与任务流程 2.1.1 协议与任务的封装 协议有协议头(协议头因为格式相同,被抽象出来)和协议体组成,协议有两类:请求协议(request)和回复协议( ...
- asp.net webAPI 自动生成帮助文档并测试
之前在项目中有用到webapi对外提供接口,发现在项目中有根据webapi的方法和注释自动生成帮助文档,还可以测试webapi方法,功能很是强大,现拿出来与大家分享一下. 先看一下生成的webapi文 ...
- Call and Apply in JavaScript
Call 和 Apply 方法可以用来代替另一个对象调用一个方法,改变this指向. 1.call -call([thisObj[,arg1[, arg2[, [,.argN]]]]]) -调用一 ...
- Linux下远程桌面Windows
rdesktop-1.7.0.tar.gz [root@localhost fcitx]# tar rdesktop-1.7.0.tar.gz [root@localhost fcitx]#cd rd ...
- 在线教程的游戏化-20分钟做了个demo
首先,不准说做得撇,因为其一,我只用了20分钟不到:其二,第一次尝试,以前想过,但是一直没有搞过,二话不说,先来截图,下载地址在最下面. 因为第一次尝试,所以很多事件自己还没有闹明白,不过基本上还是看 ...
- Revit API 楼板开洞
start [Transaction(TransactionMode.Manual)] [Regeneration(RegenerationOption.Manual)] , , ) * / , - ...
- EnumHelper枚举常用操作类
在项目中需要把枚举填充到下拉框中,所以使用统一的方法实现,测试代码如下: namespace CutPictureTest.Comm { public class EnumHelper { publi ...
- maven继承parent,relativePath warn信息的解决办法
往下看之前一定要先看 %MAVEN_HOME%/conf/settings.xml 配置文件的是否更改了,是否配置正确 <mirror> <id>nexus</id> ...
- 转connect() to unix:/var/run/php-fpm.sock failed (11: Resource temporarily unavailable)
网站常出现502 bad gateway,程序没有问题. 根据nginx日志:connect() to unix:/var/run/php-fpm.sock failed (11: Resource ...