an introduction to conditional random fields
1.Structured prediction methods are essentially a combination of classification and graphical modeling.
2.They combine the ability of graphical models to compactly model multivariate data with the ability of classification methods to perform prediction using large sets of input features.
3.The input x is divided into feature vectors {x0,x1, . . . ,xT }. Each xs contains various information about the word at position s, such as its identity, orthographic features such as prefixes and suffixes, membership in domain-specific lexicons, and information in semantic databases such as WordNet.
4.CRFs are essentially a way of combining the advantages of discriminative classification and graphical modeling, combining the ability to compactly model multivariate outputs y with the ability to leverage a large number of input features x for prediction.
5.The difference between generative models and CRFs is thus exactly analogous to the difference between the naive Bayes and logistic regression classifiers. Indeed, the multinomial logistic regression model can be seen as the simplest kind of CRF, in which there is only one output variable.
6.The insight of the graphical modeling perspective is that a distribution over very many variables can often be represented as a product of local functions that each depend on a much smaller subset of variables. This factorization turns out to have a close connection to certain conditional independence relationships among the variables — both types of information being easily summarized by a graph. Indeed, this relationship between factorization, conditional independence, and graph structure comprises much of the power of the graphical modeling framework: the conditional independence viewpoint is most useful for designing models, and the factorization viewpoint is most useful for designing inference algorithms.
7.The principal advantage of discriminative modeling is that it is better suited to including rich, overlapping features.
8.In principle, it may not be clear why these approaches should be so different, because we can always convert between the two methods using Bayes rule. For example, in the naive Bayes model, it is easy to convert the joint p(y)p(x|y) into a conditional distribution p(y|x). Indeed, this conditional has the same form as the logistic regression model (2.9). And if we managed to obtain a “true” generative model for the data, that is, a distribution p∗(y,x) = p∗(y)p∗(x|y) from which the data were actually sampled, then we could simply compute the true p∗(y|x), which is exactly the target of the discriminative approach. But it is precisely because we never have the true distribution that the two approaches are different in practice. Estimating p(y)p(x|y) first, and then computing the resulting p(y|x) (the generative approach)yields a different estimate than estimating p(y|x) directly. In other words, generative and discriminative models both have the aim of stimating p(y|x), but they get there in different ways.
an introduction to conditional random fields的更多相关文章
- (转)Image Segmentation with Tensorflow using CNNs and Conditional Random Fields
Daniil's blog Machine Learning and Computer Vision artisan. About/ Blog/ Image Segmentation with Ten ...
- 论文翻译:Conditional Random Fields as Recurrent Neural Networks
Conditional Random Fields as Recurrent Neural Networks ICCV2015 cite237 1摘要: 像素级标注的重要性(语义分割 图像理解) ...
- Conditional Random Fields (CRF) 初理解
1,Conditional Random Fields
- 条件随机场 Conditional Random Fields
简介 假设你有冠西哥一天生活中的照片(这些照片是按时间排好序的),然后你很无聊的想给每张照片打标签(Tag),比如这张是冠西哥在吃饭,那张是冠西哥在睡觉,那么你该怎么做呢? 一种方法是不管这些照片的序 ...
- NLP —— 图模型(二)条件随机场(Conditional random field,CRF)
本文简单整理了以下内容: (一)马尔可夫随机场(Markov random field,无向图模型)简单回顾 (二)条件随机场(Conditional random field,CRF) 这篇写的非常 ...
- 条件随机场(conditional random field,CRF)模型初探
0. 引言 0x1:为什么会有条件随机场?它解决了什么问题? 在开始学习CRF条件随机场之前,我们需要先了解一下这个算法的来龙去脉,它是在什么情况下被提出的,是从哪个算法演进而来的,它又解决了哪些问题 ...
- 条件随机场conditional random field
主要翻译自http://blog.echen.me/2012/01/03/introduction-to-conditional-random-fields/,原作者是MIT的大神,加入了一些我自己的 ...
- 条件随机场Conditional Random Field-CRF入门级理解
条件随机场Conditional Random Field-CRF入门级理解 有向图与无向图模型 CRF模型是一个无向概率图模型,更宽泛地说,它是一个概率图模型.现实世界的一些问题可以用概率图模型 ...
- 马尔可夫随机场(Markov random fields) 概率无向图模型 马尔科夫网(Markov network)
上面两篇博客,解释了概率有向图(贝叶斯网),和用其解释条件独立.本篇将研究马尔可夫随机场(Markov random fields),也叫无向图模型,或称为马尔科夫网(Markov network) ...
随机推荐
- MySQL 存储过程 定时任务
drop procedure if exists move_track_data; delimiter // create procedure move_track_data() begin ; st ...
- 在Html中使用Requirejs进行模块化开发
在前端模块化的时候,不仅仅是js需要进行模块化管理,html有时候也需要模块化管理.这里就介绍下如何通过requirejs,实现html代码的模块化开发. 如何使用requirejs加载html Re ...
- 【Android】应用程序Activity启动过程分析
在Android系统中,有两种操作会引发Activity的启动,一种用户点击应用程序图标时,Launcher会为我们启动应用程序的主Activity:应用程序的默认Activity启动起来后,它又可以 ...
- paip.c++ 转换 java 解决方案
paip.c++ 转换 java 解决方案 作者Attilax 艾龙, EMAIL:1466519819@qq.com 来源:attilax的专栏 地址:http://blog.csdn.net/a ...
- Merge Into
Merge Into [dbo].[Student] S using [10.58.8.224\TEST].[TestDb].[dbo].[Student] T on S.ID=T.ID WHEN M ...
- HTML+CSS纯干货就业前基础到精通系统学习2016/9/3
1:HTML纯干货学习后的达到的效果 (1):会使用HTML的基本结构,创建网页 (2):会使用文本字体相关标签,实现文字修饰和布局 (3):会使用图像.超链接相关标签,实现图文并茂的页面 (4):会 ...
- Quartz定时任务学习(二)web应用/Quartz定时任务学习(三)属性文件和jar
web中使用Quartz 1.首先在web.xml文件中加入 如下内容(根据自己情况设定) 在web.xml中添加QuartzInitializerServlet,Quartz为能够在web应用中使用 ...
- 记忆化搜索hdu1078 dfs
http://acm.hdu.edu.cn/showproblem.php?pid=1078 题意:给出n*n的格子,每个各自里面有些食物,问一只老鼠每次走最多k步所能吃到的最多的食物 #includ ...
- C# Bitmap类型与Byte[]类型相互转化
Bitmap => byte[] Bitmap b = new Bitmap( "test.bmp "); MemoryStream ms = new Memory ...
- Ubuntu “无法获得锁”解决方案(E: 无法获得锁 /var/cache/apt/archive
Ubuntu “无法获得锁”解决方案(E: 无法获得锁 /var/cache/apt/archive 现象一: E: 无法获得锁 /var/lib/dpkg/lock - open (11: 资源 ...