1.Structured prediction methods are essentially a combination of classification and graphical modeling.

2.They combine the ability of graphical models to compactly model multivariate data with the ability of classification methods to perform prediction using large sets of input features.

3.The input x is divided into feature vectors {x0,x1, . . . ,xT }. Each xs contains various information about the word at position s, such as its identity, orthographic features such as prefixes and suffixes, membership in domain-specific lexicons, and information in semantic databases such as WordNet.

4.CRFs are essentially a way of combining the advantages of discriminative classification and graphical modeling, combining the ability to compactly model multivariate outputs y with the ability to leverage a large number of input features x for prediction.

5.The difference between generative models and CRFs is thus exactly analogous to the difference between the naive Bayes and logistic regression classifiers. Indeed, the multinomial logistic regression model can be seen as the simplest kind of CRF, in which there is only one output variable.

6.The insight of the graphical modeling perspective is that a distribution over very many variables can often be represented as a product of local functions that each depend on a much smaller subset of variables. This factorization turns out to have a close connection to certain conditional independence relationships among the variables — both types of information being easily summarized by a graph. Indeed, this relationship between factorization, conditional independence, and graph structure comprises much of the power of the graphical modeling framework: the conditional independence viewpoint is most useful for designing models, and the factorization viewpoint is most useful for designing inference algorithms.

7.The principal advantage of discriminative modeling is that it is better suited to including rich, overlapping features.

8.In principle, it may not be clear why these approaches should be so different, because we can always convert between the two methods using Bayes rule. For example, in the naive Bayes model, it is easy to convert the joint p(y)p(x|y) into a conditional distribution p(y|x). Indeed, this conditional has the same form as the logistic regression model (2.9). And if we managed to obtain a “true” generative model for the data, that is, a distribution p∗(y,x) = p∗(y)p∗(x|y) from which the data were actually sampled, then we could simply compute the true p∗(y|x), which is exactly the target of the discriminative approach. But it is precisely because we never have the true distribution that the two approaches are different in practice. Estimating p(y)p(x|y) first, and then computing the resulting p(y|x) (the generative approach)yields a different estimate than estimating p(y|x) directly. In other words, generative and discriminative models both have the aim of stimating p(y|x), but they get there in different ways.

an introduction to conditional random fields的更多相关文章

  1. (转)Image Segmentation with Tensorflow using CNNs and Conditional Random Fields

    Daniil's blog Machine Learning and Computer Vision artisan. About/ Blog/ Image Segmentation with Ten ...

  2. 论文翻译:Conditional Random Fields as Recurrent Neural Networks

    Conditional Random Fields as Recurrent Neural Networks ICCV2015    cite237 1摘要: 像素级标注的重要性(语义分割 图像理解) ...

  3. Conditional Random Fields (CRF) 初理解

    1,Conditional Random Fields

  4. 条件随机场 Conditional Random Fields

    简介 假设你有冠西哥一天生活中的照片(这些照片是按时间排好序的),然后你很无聊的想给每张照片打标签(Tag),比如这张是冠西哥在吃饭,那张是冠西哥在睡觉,那么你该怎么做呢? 一种方法是不管这些照片的序 ...

  5. NLP —— 图模型(二)条件随机场(Conditional random field,CRF)

    本文简单整理了以下内容: (一)马尔可夫随机场(Markov random field,无向图模型)简单回顾 (二)条件随机场(Conditional random field,CRF) 这篇写的非常 ...

  6. 条件随机场(conditional random field,CRF)模型初探

    0. 引言 0x1:为什么会有条件随机场?它解决了什么问题? 在开始学习CRF条件随机场之前,我们需要先了解一下这个算法的来龙去脉,它是在什么情况下被提出的,是从哪个算法演进而来的,它又解决了哪些问题 ...

  7. 条件随机场conditional random field

    主要翻译自http://blog.echen.me/2012/01/03/introduction-to-conditional-random-fields/,原作者是MIT的大神,加入了一些我自己的 ...

  8. 条件随机场Conditional Random Field-CRF入门级理解

    条件随机场Conditional Random Field-CRF入门级理解   有向图与无向图模型 CRF模型是一个无向概率图模型,更宽泛地说,它是一个概率图模型.现实世界的一些问题可以用概率图模型 ...

  9. 马尔可夫随机场(Markov random fields) 概率无向图模型 马尔科夫网(Markov network)

    上面两篇博客,解释了概率有向图(贝叶斯网),和用其解释条件独立.本篇将研究马尔可夫随机场(Markov random fields),也叫无向图模型,或称为马尔科夫网(Markov network) ...

随机推荐

  1. DOS与Linux的换行字符

    一.vim打开window下的文件出现 ^M 首先理解,dos(windows)下建立的文件的换行是  ^M\$ (CRLF) ,而在Linux下面,仅仅是以 \$ (LF) 来做断行符号: (^M\ ...

  2. ios 设置状态栏文本颜色为白色

    1,在.plist文件中添加一个键值对:设置View controller-based status bar appearance的值为NO 2,在方法中 - (BOOL)application:(U ...

  3. Vue.js双向绑定的实现原理和模板引擎实现原理(##########################################)

    Vue.js双向绑定的实现原理 解析 神奇的 Object.defineProperty 这个方法了不起啊..vue.js和avalon.js 都是通过它实现双向绑定的..而且Object.obser ...

  4. JS练习题1共7题

    <p>1 一个新人入职,月工资为2000元的员工,每年涨工资5%,到退休时的月工资是多少?</p> <script> document.write(Math.rou ...

  5. atitit. orm mapping cfg 映射配置(3)-------hbnt one2maney cfg

    atitit. orm mapping cfg  映射配置(3)-------hbnt one2maney  cfg 1. 建立list 1 2. 配置xml 1 3. Hibernate中Set和L ...

  6. 前端框架layui

    可以了解下jQuery组件layer layui开始使用Layui兼容除IE6/7以外的全部浏览器,并且绝大多数结构支持响应式 弹出层如果你使用的是Layui,那么你直接在官网下载layui框架即可, ...

  7. hdu 1284完全背包

    http://acm.hdu.edu.cn/showproblem.php?pid=1284 New~ 欢迎“热爱编程”的高考少年——报考杭州电子科技大学计算机学院关于2015年杭电ACM暑期集训队的 ...

  8. 解决JS传参中文乱码

    function PopupFK(cNum,type){ var url = "contract!Paying.action"; url = url + "?contra ...

  9. 基本语法 protocols Category extension

    转:http://blog.csdn.net/wangeen/article/details/16989529 protocol   本质就是一系列的method的声明,他并不像class是必须的选项 ...

  10. 一个优秀windows C++程序员的知识体系

    思考一个优秀windows C++ 程序员该有哪些知识,可最终发现什么知识都不能少, 看下图: 除了上面知识,程序员还要不断学习, 保持对新知识的热情. 转自http://www.cppblog.co ...