an introduction to conditional random fields
1.Structured prediction methods are essentially a combination of classification and graphical modeling.
2.They combine the ability of graphical models to compactly model multivariate data with the ability of classification methods to perform prediction using large sets of input features.
3.The input x is divided into feature vectors {x0,x1, . . . ,xT }. Each xs contains various information about the word at position s, such as its identity, orthographic features such as prefixes and suffixes, membership in domain-specific lexicons, and information in semantic databases such as WordNet.
4.CRFs are essentially a way of combining the advantages of discriminative classification and graphical modeling, combining the ability to compactly model multivariate outputs y with the ability to leverage a large number of input features x for prediction.
5.The difference between generative models and CRFs is thus exactly analogous to the difference between the naive Bayes and logistic regression classifiers. Indeed, the multinomial logistic regression model can be seen as the simplest kind of CRF, in which there is only one output variable.
6.The insight of the graphical modeling perspective is that a distribution over very many variables can often be represented as a product of local functions that each depend on a much smaller subset of variables. This factorization turns out to have a close connection to certain conditional independence relationships among the variables — both types of information being easily summarized by a graph. Indeed, this relationship between factorization, conditional independence, and graph structure comprises much of the power of the graphical modeling framework: the conditional independence viewpoint is most useful for designing models, and the factorization viewpoint is most useful for designing inference algorithms.
7.The principal advantage of discriminative modeling is that it is better suited to including rich, overlapping features.
8.In principle, it may not be clear why these approaches should be so different, because we can always convert between the two methods using Bayes rule. For example, in the naive Bayes model, it is easy to convert the joint p(y)p(x|y) into a conditional distribution p(y|x). Indeed, this conditional has the same form as the logistic regression model (2.9). And if we managed to obtain a “true” generative model for the data, that is, a distribution p∗(y,x) = p∗(y)p∗(x|y) from which the data were actually sampled, then we could simply compute the true p∗(y|x), which is exactly the target of the discriminative approach. But it is precisely because we never have the true distribution that the two approaches are different in practice. Estimating p(y)p(x|y) first, and then computing the resulting p(y|x) (the generative approach)yields a different estimate than estimating p(y|x) directly. In other words, generative and discriminative models both have the aim of stimating p(y|x), but they get there in different ways.
an introduction to conditional random fields的更多相关文章
- (转)Image Segmentation with Tensorflow using CNNs and Conditional Random Fields
Daniil's blog Machine Learning and Computer Vision artisan. About/ Blog/ Image Segmentation with Ten ...
- 论文翻译:Conditional Random Fields as Recurrent Neural Networks
Conditional Random Fields as Recurrent Neural Networks ICCV2015 cite237 1摘要: 像素级标注的重要性(语义分割 图像理解) ...
- Conditional Random Fields (CRF) 初理解
1,Conditional Random Fields
- 条件随机场 Conditional Random Fields
简介 假设你有冠西哥一天生活中的照片(这些照片是按时间排好序的),然后你很无聊的想给每张照片打标签(Tag),比如这张是冠西哥在吃饭,那张是冠西哥在睡觉,那么你该怎么做呢? 一种方法是不管这些照片的序 ...
- NLP —— 图模型(二)条件随机场(Conditional random field,CRF)
本文简单整理了以下内容: (一)马尔可夫随机场(Markov random field,无向图模型)简单回顾 (二)条件随机场(Conditional random field,CRF) 这篇写的非常 ...
- 条件随机场(conditional random field,CRF)模型初探
0. 引言 0x1:为什么会有条件随机场?它解决了什么问题? 在开始学习CRF条件随机场之前,我们需要先了解一下这个算法的来龙去脉,它是在什么情况下被提出的,是从哪个算法演进而来的,它又解决了哪些问题 ...
- 条件随机场conditional random field
主要翻译自http://blog.echen.me/2012/01/03/introduction-to-conditional-random-fields/,原作者是MIT的大神,加入了一些我自己的 ...
- 条件随机场Conditional Random Field-CRF入门级理解
条件随机场Conditional Random Field-CRF入门级理解 有向图与无向图模型 CRF模型是一个无向概率图模型,更宽泛地说,它是一个概率图模型.现实世界的一些问题可以用概率图模型 ...
- 马尔可夫随机场(Markov random fields) 概率无向图模型 马尔科夫网(Markov network)
上面两篇博客,解释了概率有向图(贝叶斯网),和用其解释条件独立.本篇将研究马尔可夫随机场(Markov random fields),也叫无向图模型,或称为马尔科夫网(Markov network) ...
随机推荐
- mobilebone.js使用笔记
mobilebone.js主要用来是网页呈现单页效果,添加类似native app的页面切换效果.原理是:当打开a链接里的页面时,不再以传统的新页面打开,而是以ajax-html的方式,将新页面的内容 ...
- 【Android】应用程序Activity启动过程分析
在Android系统中,有两种操作会引发Activity的启动,一种用户点击应用程序图标时,Launcher会为我们启动应用程序的主Activity:应用程序的默认Activity启动起来后,它又可以 ...
- Atitit.列表页面and条件查询的实现最佳实践(2)------翻页 分页 控件的实现java .net php
)------翻页 分页 控件的实现java .net php 1. 关于翻页有关的几大控件::搜索框控件,显示表格控件,翻页器,数据源控件.. 1 2. 翻页的显示格式:: 1 2.1. 通常ui- ...
- MySQL的几种连接 join/inner join/cross join/逗号/left join/right join/natural join
转载请注明出处!! 之前数据表连接操作多使用逗号或者join,对几种连接的概念一直浑浑噩噩,最近研究了一波,把这些连接的区别搞明白了. 连接:A xjoin B(主表 操作 关联表) selec ...
- javaweb回顾第二篇tomcat和web程序部署
前言这篇主要说下关于tomcat中一些属性和web程序的简单部署,可能在实际开发有更好的部署方式,但是这也是一个基础. 1:tomcat 关于tomcat估计只要接触java的人都听过这个名字,那我们 ...
- VS2015 ASP.NET5 Web项目结构浅析
前言 本文个人同步博客地址http://aehyok.com/Blog/Detail/76.html 个人网站地址:aehyok.com QQ 技术群号:206058845,验证码为:aehyok 本 ...
- QQ邮箱的安全问题
下午同事群里有人提醒,小心欺诈邮件.邮件内容为你的帐户在XX存在异地登录,已经进入了[保护模式],如需解除请点击[解除保护模式] 除了链接之外,其它跟官方的是一模一样,包括标题. 那个链接的地址是:h ...
- 【VerySky原创】后台JOB运行-相关表
[VerySky原创] TBTCP 批作业步骤概述TBTCO 作业状态概述表TBTCS 批计划表TBTC_SPOOLID Background Processing Spool ...
- iOS crash 异常捕获
// // UncaughtExceptionHandler.m // UncaughtExceptions // // Created by Matt Gallagher on 2010/05 ...
- XML 和 List 互转类
XML 和 List 互转类 using System; using System.Collections.Generic; using System.Linq; using System.Text; ...