树有很多种形态,给定结点个数,求生成不同形态二叉树的个数,显然要用到Catalan数列。

那如果给定一个图(Graph)\(G=(V,E)\),要求其最小生成树G',最好的方法莫过于Prim或Kruskal了。

上图就是一种求最小生成树的方法。

可要求图G中不同生成树的总个数呢?
这里要用到Kirchhoff's theoreom,一个神奇的定理。

这里只做简单的介绍,并不给出严格的证明。
详细内容请参见Wikipedia::Kirchhoff's theorem
以及芜湖一中 周冬さん的生成树的计数及其应用 论文版


符号约定:

  • 图\(G\)
  • 度数矩阵\(D[G]\)
  • 邻接矩阵\(A[G]\),其中,若存在边\((v_i,v_j)\),则记\(a_{ij}=a_{ji}=1\)
  • Kirchhoff矩阵\(C[G]=D[G]-A[G]\)

删去\(C[G]\)中的第r行第r列,得到\(C_r[G]\)

计算\(C_r[G]\)的行列式\(det C_r[G]\),得出的结果记为\(d\)
则\(G\)的生成树个数\(t(G)=|d|\)


至此,我们解决了这个不常见的问题。

生成树的个数——基尔霍夫定理(Matrix-Tree Theorem)的更多相关文章

  1. @总结 - 7@ 生成树计数 —— matrix - tree 定理(矩阵树定理)与 prüfer 序列

    目录 @0 - 参考资料@ @0.5 - 你所需要了解的线性代数知识@ @1 - 矩阵树定理主体@ @证明 part - 1@ @证明 part - 2@ @证明 part - 3@ @证明 part ...

  2. SPOJ.104.Highways([模板]Matrix Tree定理 生成树计数)

    题目链接 \(Description\) 一个国家有1~n座城市,其中一些城市之间可以修建高速公路(无自环和重边). 求有多少种方案,选择修建一些高速公路,组成一个交通网络,使得任意两座城市之间恰好只 ...

  3. 矩阵树定理(Matrix Tree)学习笔记

    如果不谈证明,稍微有点线代基础的人都可以在两分钟内学完所有相关内容.. 行列式随便找本线代书看一下基本性质就好了. 学习资源: https://www.cnblogs.com/candy99/p/64 ...

  4. [bzoj1016][JSOI2008]最小生成树计数 (Kruskal + Matrix Tree 定理)

    Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...

  5. 【证明与推广与背诵】Matrix Tree定理和一些推广

    [背诵手记]Matrix Tree定理和一些推广 结论 对于一个无向图\(G=(V,E)\),暂时钦定他是简单图,定义以下矩阵: (入)度数矩阵\(D\),其中\(D_{ii}=deg_i\).其他= ...

  6. 数学-Matrix Tree定理证明

    老久没更了,冬令营也延期了(延期后岂不是志愿者得上学了?) 最近把之前欠了好久的债,诸如FFT和Matrix-Tree等的搞清楚了(啊我承认之前只会用,没有理解证明--),FFT老多人写,而Matri ...

  7. 一篇自己都看不懂的Matrix tree总结

    Matrix tree定理用于连通图生成树计数,由于博主太菜看不懂定理证明,所以本篇博客不提供\(Matrix\ tree\)定理的证明内容(反正这个东西背结论就可以了是吧) 理解\(Matrix\ ...

  8. HDU 4305 Lightning Matrix Tree定理

    题目链接:https://vjudge.net/problem/HDU-4305 解法:首先是根据两点的距离不大于R,而且中间没有点建立一个图.之后就是求生成树计数了. Matrix-Tree定理(K ...

  9. POJ 3532 Resistance(高斯消元+基尔霍夫定理)

    [题目链接] http://poj.org/problem?id=3532 [题目大意] 给出n个点,一些点之间有电阻相连,求1~n的等效电阻 [题解] 有基尔霍夫定理:任何一个点(除起点和终点)发出 ...

随机推荐

  1. nodejs初探(二)第一个nodejs程序“hello world”

    直接用文本编辑器编写helloworld.js,保存在桌面 var http = require("http"); http.createServer(function(reque ...

  2. mybatis处理一对一查询

    有班级表,老师表,要求给定班级id查出班级信息和班级对应的老师信息 1.使用嵌套结果方式 sql语句: <select id="findClasses" parameterT ...

  3. 【knowledgebase】不要在一个很大的RDD上调用collect

    如果一个RDD很大以至于它的所有元素并不能在driver端机器的内存中存放下,请不要进行如下调用: val values = myVeryLargeRDD.collect()   collect将尝试 ...

  4. DATAGUARD 添加修改REDOLOG大小

    DG在线日志组大小修改 环境(单实例,Centos 6.5 X64,oracle 10.2.0.5,filesystem存储) REDO ONLINE LOG select * from v$logf ...

  5. Android软件测试Monkey测试工具

    前言: 最近开始研究Android自动化测试方法,对其中的一些工具.方法和框架做了一些简单的整理,其中包括android测试框架.CTS.Monkey.Monkeyrunner.benchmark.其 ...

  6. c语言 sscanf()函数

    sscanf()函数用于从字符串中读取指定格式的数据,其原型如下:    int sscanf (char *str, char * format [, argument, ...]); [参数]参数 ...

  7. CentOS6开启FTP及telnet服务教程

    先来开通CentOS6的FTP服务吧.telnet服务也一并学习学习吧.在安装好CentOS以后,需要设置Ftp和Telnet服务文件,才能启动Ftp和Telnet服务,可以通过远程控制进行开启. 开 ...

  8. MC的一些具体的应用的例子的总结

    任何东西,都有其适用的场景,在合适的场景下,才能发挥好更大的作用. 对于memcached,使用内存来存取数据,一般情况下,速度比直接从数据库和文件系统读取要快的多. memcached的最常用的场景 ...

  9. 关于sql注入

    删除表,先猜表名,可以使用下面的语名: Select * from A where A.a = ‘testdata’; drop table A---’; If a field only allow ...

  10. CSS 知识汇总

    1:   inline-block 元素 IE6 7下只有 inline 的元素有 inline-block, 比如 span元素,如果要使其它元素有 inline-block,比如 div 有 in ...