SIFT+HOG+鲁棒统计+RANSAC
今天的计算机视觉课老师讲了不少内容,不过都是大概讲了下,我先记录下,细讲等以后再补充。
SIFT特征:
尺度不变性:用不同参数的高斯函数作用于图像(相当于对图像进行模糊,得到不同尺度的图像),用得到的图像作差,找极值(相
当于穷举不同尺度空间的图像,找其特征点,在不同尺度下,都在极值范围之内,故能满足尺度不变性。
然后要找到极值点的位置,对其进行定位。
然后对极值进行描述。
旋转不变性:用梯度方向来表示极值点的方向,定义主方向能保证旋转不变性。
光照不变性
SIFT的特征点检测是在DOG图像上进行的,关于DOG可参考:http://blog.csdn.net/abcjennifer/article/details/7639488,解释得很清楚。
这篇博文http://www.zhizhihu.com/html/y2010/2146.html主要说了尺度空间和图像金字塔间的差别:尺度空间实际上就是平滑,像素不变;金字塔则是对图像进行降采样,像素降低。
int main(int argc, char* argv[])
{
Mat img_1 = imread("basketball.jpg", CV_LOAD_IMAGE_GRAYSCALE);//宏定义时CV_LOAD_IMAGE_GRAYSCALE=0,也就是读取灰度图像
Mat img_2 = imread("basketball2.jpg", CV_LOAD_IMAGE_GRAYSCALE);//一定要记得这里路径的斜线方向,这与Matlab里面是相反的
if (!img_1.data || !img_2.data)//如果数据为空
{
cout << "opencv error" << endl;
return -;
}
cout << "open right" << endl; //第一步,用SIFT算子检测关键点 SiftFeatureDetector detector;//构造函数采用内部默认的
std::vector<KeyPoint> keypoints_1, keypoints_2;//构造2个专门由点组成的点向量用来存储特征点 detector.detect(img_1, keypoints_1);//将img_1图像中检测到的特征点存储起来放在keypoints_1中
detector.detect(img_2, keypoints_2);//同理 //在图像中画出特征点
Mat img_keypoints_1, img_keypoints_2; drawKeypoints(img_1, keypoints_1, img_keypoints_1, Scalar::all(-), DrawMatchesFlags::DEFAULT);//在内存中画出特征点
drawKeypoints(img_2, keypoints_2, img_keypoints_2, Scalar::all(-), DrawMatchesFlags::DEFAULT); imshow("sift_keypoints_1", img_keypoints_1);//显示特征点
imshow("sift_keypoints_2", img_keypoints_2); //计算特征向量
SiftDescriptorExtractor extractor;//定义描述子对象 Mat descriptors_1, descriptors_2;//存放特征向量的矩阵 extractor.compute(img_1, keypoints_1, descriptors_1);//计算特征向量
extractor.compute(img_2, keypoints_2, descriptors_2); //用burte force进行匹配特征向量
BruteForceMatcher<L2<float>>matcher;//定义一个burte force matcher对象
vector<DMatch>matches;
matcher.match(descriptors_1, descriptors_2, matches); //绘制匹配线段
Mat img_matches;
drawMatches(img_1, keypoints_1, img_2, keypoints_2, matches, img_matches);//将匹配出来的结果放入内存img_matches中 //显示匹配线段
imshow("sift_Matches", img_matches);//显示的标题为Matches waitKey();
return ;
}
SIFT Code
具体可参考:http://www.cnblogs.com/tornadomeet/archive/2012/08/16/2643168.html
HOG:梯度直方图。SIFT特征的前三步。
HOG与SIFT:
HOG可先参考这位博主:http://blog.csdn.net/abcjennifer/article/details/7365651,通俗的介绍了HOG:
通俗的讲:
HOG特征提取方法就是将一个image:
1. 灰度化(将图像看做一个x,y,z(灰度)的三维图像)
2. 划分成小cells(2*2)
3. 计算每个cell中每个pixel的gradient(即orientation)
4. 统计每个cell的梯度直方图(不同梯度的个数),即可形成每个cell的descriptor
这篇博文以图解的形式介绍了opencv源码中的一些参数:http://blog.csdn.net/raodotcong/article/details/6239431
HOG与SIFT的区别
鲁棒统计
Hough变换:举例说明吧。怎么用一系列点来确定一条直线。
每两个点确定k,b(斜率和截距),然后统计k,b的数量。相当于用每两个点进行投票,谁的票多,最后就能确定k,b
这个解释通俗易懂 http://www.cnblogs.com/smartvessel/archive/2011/10/20/2218654.html
RANSAC:
说下大致算法吧,同样举例说明。
随机选两个点作出模型,计算内点到此模型的距离之和。
重复上述过程,选出距离最小的那个模型。
参考:http://www.cnblogs.com/xrwang/archive/2011/03/09/ransac-1.html
SIFT+HOG+鲁棒统计+RANSAC的更多相关文章
- CVPR2020:基于自适应采样的非局部神经网络鲁棒点云处理(PointASNL)
CVPR2020:基于自适应采样的非局部神经网络鲁棒点云处理(PointASNL) PointASNL: Robust Point Clouds Processing Using Nonlocal N ...
- 基于2D-RNN的鲁棒行人跟踪
基于2D-RNN的鲁棒行人跟踪 Recurrent Neural Networks RNN 行人跟踪 读"G.L. Masala, et.al., 2D Recurrent Neural N ...
- Robust Locally Weighted Regression 鲁棒局部加权回归 -R实现
鲁棒局部加权回归 [转载时请注明来源]:http://www.cnblogs.com/runner-ljt/ Ljt 作为一个初学者,水平有限,欢迎交流指正. 算法参考文献: (1) Robust L ...
- 鲁棒图(Robustness Diagram)
鲁棒图与系统需求分析 鲁棒图(Robustness Diagram)是由Ivar Jacobson于1991年发明的,用以回答“每个用例需要哪些对象”的问题.后来的UML并没有将鲁棒图列入UML标准, ...
- H∞一般控制问题的鲁棒叙述性说明
Robust Control System:反馈控制有承受一定类不确定能力的影响,这一直保持在这种不确定的条件(制)稳定.动态特性(灵敏度)和稳态特性(逐步调整)的能力. 非结构不确定性(Unstru ...
- 如何编写高质量的 JS 函数(2) -- 命名/注释/鲁棒篇
本文首发于 vivo互联网技术 微信公众号 链接:https://mp.weixin.qq.com/s/sd2oX0Z_cMY8_GvFg8pO4Q作者:杨昆 上篇<如何编写高质量的 JS 函数 ...
- python练习 英文字符的鲁棒输入+数字的鲁棒输入
鲁棒 = Robust 健壮 英文字符的鲁棒输入 描述 获得用户的任何可能输入,将其中的英文字符进行打印输出,程序不出现错误. ...
- 【论文阅读】Beyond OCR + VQA: 将OCR融入TextVQA的执行流程中形成更鲁棒更准确的模型
论文题目:Beyond OCR + VQA: Involving OCR into the Flow for Robust and Accurate TextVQA 论文链接:https://dl.a ...
- 解读ICDE'22论文:基于鲁棒和可解释自编码器的无监督时间序列离群点检测算法
摘要:本文提出了两个用于无监督的具备可解释性和鲁棒性时间序列离群点检测的自动编码器框架. 本文分享自华为云社区<解读ICDE'22论文:基于鲁棒和可解释自编码器的无监督时间序列离群点检测算法&g ...
随机推荐
- js事件代理
需要注意的blog:http://blog.csdn.net/majian_1987/article/details/8591385 一篇博客看懂 http://blog.csdn.net/maji ...
- AngularJS开发指南13:AngularJS的过滤器详解
AngularJS过滤器是用来格式化输出数据的.除了格式化数据,过滤器还能修改DOM.这使得过滤器通常用来做些如“适时的给输出加入CSS样式”等工作. 比如,你可能有些数据在输出之前需要根据进行本地化 ...
- 软件工程(QLGY2015)第一次作业小结(含成绩)
相关博文目录: 第一次作业点评 第二次作业点评 第三次作业点评 Github项目提交 github的代码提交,大部分人都只是提交了单个文件,存在几个问题 请提交完整的项目文件到github 问题:为什 ...
- 关于js字符串替换的一道笔试题目
题目描述 请写出一个字符串转换函数,接受两个参数: 1.字符串 形如{a}ab-{b}cde{c}fff{d}{}: 2.对象,形如{'a':'1','b':'2','d':'4'} 根据,对象的属性 ...
- 自动化测试UI Test, Performance Test, Load Test 总结整理
MSDN: 测试应用程序,Test apps early and often ,Improve Code Quality 推荐书: <Visual Studio 2015高级编程> < ...
- hdu4333 扩展KMP
慢慢研究可以发现,可以用扩展kmp来求.由于扩展kmp的next[]只有一部分,当前位子前面那部分和母串的后部分,所以可以将字符串复制接在后面一次. 先求如果next[]>0&& ...
- 图解Android - Android GUI 系统 (5) - Android的Event Input System
Android的用户输入处理 Android的用户输入系统获取用户按键(或模拟按键)输入,分发给特定的模块(Framework或应用程序)进行处理,它涉及到以下一些模块: Input Reader: ...
- Java异常分类
一.基本概念 看java的异常结构图 Throwable是所有异常的根,java.lang.ThrowableError是错误,java.lang.ErrorException是异常,java.lan ...
- jQuery技术交流资料
jQuery技术交流资料https://www.zybuluo.com/jikeytang/note/65371
- STL Iterators
Summary of Chapter 33 STL Iterators from The C++ Programming Language 4th. Ed., Bjarne Stroustrup. - ...