The Unique MST

Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 36692   Accepted: 13368

Description

Given a connected undirected graph, tell if its minimum spanning tree is unique.

Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'), with the following properties: 
1. V' = V. 
2. T is connected and acyclic.

Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E') of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all the edges in E'.

Input

The first line contains a single integer t (1 <= t <= 20), the number of test cases. Each case represents a graph. It begins with a line containing two integers n and m (1 <= n <= 100), the number of nodes and edges. Each of the following m lines contains a triple (xi, yi, wi), indicating that xi and yi are connected by an edge with weight = wi. For any two nodes, there is at most one edge connecting them.

Output

For each input, if the MST is unique, print the total cost of it, or otherwise print the string 'Not Unique!'.

Sample Input

2
3 3
1 2 1
2 3 2
3 1 3
4 4
1 2 2
2 3 2
3 4 2
4 1 2

Sample Output

3
Not Unique! 题解:
次小生成树,维护一个两点间的最小距离,最后再向上加
#include <stdio.h>
#include <algorithm>
#include <vector>
#include <cstring>
#include <iostream>
using namespace std;
#define line cout<<"------------------"<<endl;
const int MAXN=1e4+10;
const int INF=0x3f3f3f3f;
int n,m;
struct node{
int x,y;
int v;
bool vis;
}Edge[MAXN];
bool cmp(node a,node b)
{
return a.v<b.v;
}
int pre[MAXN];
int Find(int a)
{
if(pre[a]==a)
return a;
return Find(pre[a]);
}
vector<int >G[110]; int maxd[110][110];//并查集划到一个树上后,树上任意两点之间的距离 void init()
{
for (int i = 1; i <=n; ++i) {
G[i].clear();
pre[i] = i;
G[i].push_back(i);
} }
int main()
{
int _;
scanf("%d",&_);
while(_--)
{
scanf("%d%d",&n,&m);
init();
for(int i=1;i<=m;i++)
{
scanf("%d%d%d",&Edge[i].x,&Edge[i].y,&Edge[i].v);
Edge[i].vis=false;
}
sort(Edge+1,Edge+1+m,cmp);
int sum=0;
for (int i = 1; i <=m ; ++i) {
int x=Find(Edge[i].x);
int y=Find(Edge[i].y);
if(x!=y)
{
pre[x]=y;
sum+=Edge[i].v;
int len1=G[x].size();
int len2=G[y].size();
for (int j = 0; j <len1 ; ++j) {
for (int k = 0; k <len2 ; ++k) {
maxd[G[x][j]][G[y][k]]=maxd[G[y][k]][G[x][j]]=Edge[i].v;//构建两点间最小距离
}
}
int tem[110];
for (int j = 0; j <len2 ; ++j) {
tem[j]=G[y][j];
}
for (int j = 0; j <len1 ; ++j) {
G[y].push_back(G[x][j]);
}
for (int j = 0; j <len2 ; ++j) {
G[x].push_back(tem[j]);
}
Edge[i].vis=true;
}
}
int cis=INF;
for (int i = 1; i <=m ; ++i) {//从不是最小生成树上的边,遍历向上加。找到次小生成树
if(!Edge[i].vis)
cis=min(cis,sum+Edge[i].v-maxd[Edge[i].x][Edge[i].y]);
}
if(cis>sum)
printf("%d\n",sum);
else
printf("Not Unique!\n");
} return 0;
}
//poj1679

  

POJ1679(次小生成树)的更多相关文章

  1. POJ1679(次小生成树)

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 24201   Accepted: 8596 D ...

  2. poj1679次小生成树入门题

    次小生成树求法:例如求最小生成树用到了 1.2.4这三条边,总共5条边,那循环3次的时候,每次分别不用1.2.4求得最小生成树的MST,最小的MST即为次小生成树 如下代码maxx即求最小生成树时求得 ...

  3. poj1679 次小生成树

    prim方法:先求过一遍prim,同时标记使用过得边.然后同时记录任意2点间的最大值. 每次加入一条新的边,会产生环,删去环中的最大值即可. #include<stdio.h> #incl ...

  4. POJ1679 The Unique MST[次小生成树]

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 28673   Accepted: 10239 ...

  5. 次小生成树(POJ1679/CDOJ1959)

    POJ1679 首先求出最小生成树,记录权值之和为MinST.然后枚举添加边(u,v),加上后必形成一个环,找到环上非(u,v)边的权值最大的边,把它删除,计算当前生成树的权值之和,取所有枚举加边后生 ...

  6. POJ1679 The Unique MST【次小生成树】

    题意: 判断最小生成树是否唯一. 思路: 首先求出最小生成树,记录现在这个最小生成树上所有的边,然后通过取消其中一条边,找到这两点上其他的边形成一棵新的生成树,求其权值,通过枚举所有可能,通过这些权值 ...

  7. POJ1679 The Unique MST 【次小生成树】

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 20421   Accepted: 7183 D ...

  8. 次小生成树(poj1679)

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 20737   Accepted: 7281 D ...

  9. POJ1679 The Unique MST —— 次小生成树

    题目链接:http://poj.org/problem?id=1679 The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total S ...

随机推荐

  1. tampermonkey利用@require调用本地脚本的方法

    比如Tampermonkey上的有个用户脚本a,本来的方法是: 1.直接在Tampermonkey上编辑js,适合高手,但是本人不清楚脚本如何同步,况且不熟练js,在Tampermonkey上写太难了 ...

  2. Oracle日志组添加冗余文件和日志组

    rac中需要指定thread添加日志组RAC:alter database add logfile thread 1 group 1('+DATA/irac/redo01_1.log','+DATA/ ...

  3. oracle 表 视图 存储过程 序列 job

    table 表 --delete table drop table Test1; -- Create table create table TEST1 (   ID     NUMBER,   T_N ...

  4. java 解压缩Zip文件 ziputil

    package com.lanyuan.assembly.util; import java.io.BufferedOutputStream;import java.io.File;import ja ...

  5. C/C++ 修改控制台程序文字颜色

    可以修改前景色(字体颜色)和背景色. 示例代码如下: #include <iostream> #include <Windows.h> //需要引用Windows.h usin ...

  6. 为什么有的系统的事务码BSP_WD_CMPWB看不见Enhance Component这个按钮

    我的同事问我,为什么有的系统看不到下图7的按钮? 对比两张图里工具栏的差异. 答案 这是因为在图2(看不见Enhance Component按钮)的系统里,该系统的类型被设置为"SAP&qu ...

  7. python:包与异常处理

    一.包 1,什么是包? 把解决一类问题的模块放在同一个文件夹里-----包 2,包是一种通过使用‘.模块名’来组织python模块名称空间的方式. 1. 无论是import形式还是from...imp ...

  8. 【[SCOI2010]生成字符串】

    \(n=m\)时候经典的卡特兰 那\(n!=m\)呢,还是按照卡特兰的方式来推 首先总情况数就是\(\binom{n+m}{n}\),在\(n+m\)个里选择\(n\)个\(1\) 显然有不合法的情况 ...

  9. C#多线程最简单Demo

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...

  10. PAT1087. All Roads Lead to Rome

    PAT1087. All Roads Lead to Rome 题目大意 给定一个图的边权和点权, 求边权最小的路径; 若边权相同, 求点权最大; 若点权相同, 则求平均点权最大. 思路 先通过 Di ...