POJ1679(次小生成树)
The Unique MST
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 36692 | Accepted: 13368 |
Description
Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'), with the following properties:
1. V' = V.
2. T is connected and acyclic.
Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E') of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all the edges in E'.
Input
Output
Sample Input
2
3 3
1 2 1
2 3 2
3 1 3
4 4
1 2 2
2 3 2
3 4 2
4 1 2
Sample Output
3
Not Unique! 题解:
次小生成树,维护一个两点间的最小距离,最后再向上加
#include <stdio.h>
#include <algorithm>
#include <vector>
#include <cstring>
#include <iostream>
using namespace std;
#define line cout<<"------------------"<<endl;
const int MAXN=1e4+10;
const int INF=0x3f3f3f3f;
int n,m;
struct node{
int x,y;
int v;
bool vis;
}Edge[MAXN];
bool cmp(node a,node b)
{
return a.v<b.v;
}
int pre[MAXN];
int Find(int a)
{
if(pre[a]==a)
return a;
return Find(pre[a]);
}
vector<int >G[110]; int maxd[110][110];//并查集划到一个树上后,树上任意两点之间的距离 void init()
{
for (int i = 1; i <=n; ++i) {
G[i].clear();
pre[i] = i;
G[i].push_back(i);
} }
int main()
{
int _;
scanf("%d",&_);
while(_--)
{
scanf("%d%d",&n,&m);
init();
for(int i=1;i<=m;i++)
{
scanf("%d%d%d",&Edge[i].x,&Edge[i].y,&Edge[i].v);
Edge[i].vis=false;
}
sort(Edge+1,Edge+1+m,cmp);
int sum=0;
for (int i = 1; i <=m ; ++i) {
int x=Find(Edge[i].x);
int y=Find(Edge[i].y);
if(x!=y)
{
pre[x]=y;
sum+=Edge[i].v;
int len1=G[x].size();
int len2=G[y].size();
for (int j = 0; j <len1 ; ++j) {
for (int k = 0; k <len2 ; ++k) {
maxd[G[x][j]][G[y][k]]=maxd[G[y][k]][G[x][j]]=Edge[i].v;//构建两点间最小距离
}
}
int tem[110];
for (int j = 0; j <len2 ; ++j) {
tem[j]=G[y][j];
}
for (int j = 0; j <len1 ; ++j) {
G[y].push_back(G[x][j]);
}
for (int j = 0; j <len2 ; ++j) {
G[x].push_back(tem[j]);
}
Edge[i].vis=true;
}
}
int cis=INF;
for (int i = 1; i <=m ; ++i) {//从不是最小生成树上的边,遍历向上加。找到次小生成树
if(!Edge[i].vis)
cis=min(cis,sum+Edge[i].v-maxd[Edge[i].x][Edge[i].y]);
}
if(cis>sum)
printf("%d\n",sum);
else
printf("Not Unique!\n");
} return 0;
}
//poj1679
POJ1679(次小生成树)的更多相关文章
- POJ1679(次小生成树)
The Unique MST Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 24201 Accepted: 8596 D ...
- poj1679次小生成树入门题
次小生成树求法:例如求最小生成树用到了 1.2.4这三条边,总共5条边,那循环3次的时候,每次分别不用1.2.4求得最小生成树的MST,最小的MST即为次小生成树 如下代码maxx即求最小生成树时求得 ...
- poj1679 次小生成树
prim方法:先求过一遍prim,同时标记使用过得边.然后同时记录任意2点间的最大值. 每次加入一条新的边,会产生环,删去环中的最大值即可. #include<stdio.h> #incl ...
- POJ1679 The Unique MST[次小生成树]
The Unique MST Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 28673 Accepted: 10239 ...
- 次小生成树(POJ1679/CDOJ1959)
POJ1679 首先求出最小生成树,记录权值之和为MinST.然后枚举添加边(u,v),加上后必形成一个环,找到环上非(u,v)边的权值最大的边,把它删除,计算当前生成树的权值之和,取所有枚举加边后生 ...
- POJ1679 The Unique MST【次小生成树】
题意: 判断最小生成树是否唯一. 思路: 首先求出最小生成树,记录现在这个最小生成树上所有的边,然后通过取消其中一条边,找到这两点上其他的边形成一棵新的生成树,求其权值,通过枚举所有可能,通过这些权值 ...
- POJ1679 The Unique MST 【次小生成树】
The Unique MST Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 20421 Accepted: 7183 D ...
- 次小生成树(poj1679)
The Unique MST Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 20737 Accepted: 7281 D ...
- POJ1679 The Unique MST —— 次小生成树
题目链接:http://poj.org/problem?id=1679 The Unique MST Time Limit: 1000MS Memory Limit: 10000K Total S ...
随机推荐
- tampermonkey利用@require调用本地脚本的方法
比如Tampermonkey上的有个用户脚本a,本来的方法是: 1.直接在Tampermonkey上编辑js,适合高手,但是本人不清楚脚本如何同步,况且不熟练js,在Tampermonkey上写太难了 ...
- Oracle日志组添加冗余文件和日志组
rac中需要指定thread添加日志组RAC:alter database add logfile thread 1 group 1('+DATA/irac/redo01_1.log','+DATA/ ...
- oracle 表 视图 存储过程 序列 job
table 表 --delete table drop table Test1; -- Create table create table TEST1 ( ID NUMBER, T_N ...
- java 解压缩Zip文件 ziputil
package com.lanyuan.assembly.util; import java.io.BufferedOutputStream;import java.io.File;import ja ...
- C/C++ 修改控制台程序文字颜色
可以修改前景色(字体颜色)和背景色. 示例代码如下: #include <iostream> #include <Windows.h> //需要引用Windows.h usin ...
- 为什么有的系统的事务码BSP_WD_CMPWB看不见Enhance Component这个按钮
我的同事问我,为什么有的系统看不到下图7的按钮? 对比两张图里工具栏的差异. 答案 这是因为在图2(看不见Enhance Component按钮)的系统里,该系统的类型被设置为"SAP&qu ...
- python:包与异常处理
一.包 1,什么是包? 把解决一类问题的模块放在同一个文件夹里-----包 2,包是一种通过使用‘.模块名’来组织python模块名称空间的方式. 1. 无论是import形式还是from...imp ...
- 【[SCOI2010]生成字符串】
\(n=m\)时候经典的卡特兰 那\(n!=m\)呢,还是按照卡特兰的方式来推 首先总情况数就是\(\binom{n+m}{n}\),在\(n+m\)个里选择\(n\)个\(1\) 显然有不合法的情况 ...
- C#多线程最简单Demo
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...
- PAT1087. All Roads Lead to Rome
PAT1087. All Roads Lead to Rome 题目大意 给定一个图的边权和点权, 求边权最小的路径; 若边权相同, 求点权最大; 若点权相同, 则求平均点权最大. 思路 先通过 Di ...