题目链接:

http://acm.hdu.edu.cn/showproblem.php?pid=1452

题目大意:

求2004^x次方的因子和mod29的值

解题思路:

首先2004 = 2 * 2 * 3 * 167

所以2004^x = 2^(2x) * 3 ^(x) * 167 ^ (x)

因子和为:

[ (2^(2x+1) - 1) / (2 - 1) ] * [(3 ^ (x+1) - 1) / (3 - 1)]  * [(167 ^ (x+1) - 1) / (167 - 1)]

最终mod29

由于有分数求模,取逆元,还需用快速幂求幂值

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll pow(ll a, ll b, ll m)
{
ll ans = ;
while(b)
{
if(b & )ans = ans * a % m;
a *= a;
a %= m;
b /= ;
}
return ans;
}
ll extgcd(ll a, ll b, ll& x, ll& y)
//求解ax+by=gcd(a, b)
//返回值为gcd(a, b)
{
ll d = a;
if(b)
{
d = extgcd(b, a % b, y, x);
y -= (a / b) * x;
}
else x = , y = ;
return d;
}
ll mod_inverse(ll a, ll m)
//求解a关于模上m的逆元
//返回-1表示逆元不存在
{
ll x, y;
ll d = extgcd(a, m, x, y);
return d == ? (m + x % m) % m : -;
}
int main()
{
ll x;
while(cin >> x && x)
{
ll m = ;
ll a = pow(, * x + , m) - ;
ll b = pow(, x + , m) - ;
ll c = pow(, x + , m) - ;
ll ans = a * b * c * mod_inverse(, m) * mod_inverse(, m);
ans %= m;
cout<<ans<<endl;
}
return ;
}

hdu-1452 Happy 2004---因子和+逆元的更多相关文章

  1. HDU 1452 Happy 2004 (逆元+快速幂+积性函数)

    G - Happy 2004 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Subm ...

  2. HDU 1452 Happy 2004(因子和的积性函数)

    题目链接 题意 : 给你一个X,让你求出2004的X次方的所有因子之和,然后对29取余. 思路 : 原来这就是积性函数,点这里这里这里,这里讲得很详细. 在非数论的领域,积性函数指所有对于任何a,b都 ...

  3. 数学--数论--Hdu 1452 Happy 2004(积性函数性质+和函数公式+快速模幂+乘法逆元)

    Consider a positive integer X,and let S be the sum of all positive integer divisors of 2004^X. Your ...

  4. Hdu 1452 Happy 2004(除数和函数,快速幂乘(模),乘法逆元)

    Problem Description Considera positive integer X,and let S be the sum of all positive integer diviso ...

  5. hdu 1452 Happy 2004

    因子和: 的因子是1,2,3,6; 6的因子和是 s(6)=1+2+3+6=12; 的因子是1,2,4,5,10,20; 20的因子和是 s(20)=1+2+4+5+10+20=42; 的因子是1,2 ...

  6. hdu 1452 Happy 2004 膜拜这推导过程

    Happy 2004 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  7. HDU 1452 Happy 2004(因数和+费马小定理+积性函数)

    Happy 2004 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total ...

  8. HDU 1452 Happy 2004(唯一分解定理)

    题目链接:传送门 题意: 求2004^x的全部约数的和. 分析: 由唯一分解定理可知 x=p1^a1*p2^a2*...*pn^an 那么其约数和 sum = (p1^0+p1^1^-+p1^a1)* ...

  9. HDU 1452 欧拉定理

    让你求$2004^x$所有因子之和,因子之和函数是积性函数$\sigma(n)=\sum_{d|n}d=\prod_{i=0}^{m}(\sum_{j=0}^{k_i}{P_i^{j}})$可用二项式 ...

  10. hdu 1425 Happy 2004

    题目链接 hdu 1425 Happy 2004 题解 题目大意: 求 \[\sum_{d|2004^{x}}d\ mod\ 29\] 记为\(s(2004^x)\) \(sum(2004^{x})= ...

随机推荐

  1. phpstorm 2017 关掉变量提示 parameter name hints

    配置面板中搜索 hints 路径 Editor > General > Appearance > Show parameter name hits 去掉前面的勾就行了

  2. 采用MQTT协议实现android消息推送(1)MQTT 协议简介

    1.资料 mqtt官网 http://mqtt.org/ 服务端程序列表 https://github.com/mqtt/mqtt.github.io/wiki/servers 客户端库列表 http ...

  3. windows下dubbo-admin的安装

    本来以为十分钟就能搞定的东西结果搞了一个小时,也是菜到抠脚,赶紧记录一下. 下载dubbo源码,下载地址:https://download.csdn.net/download/huangzhang_/ ...

  4. GCD - Extreme(欧拉函数变形)

    题目链接:https://vjudge.net/problem/UVA-11426 题目大意: 给出整数n∈[2,4000000],求解∑gcd(i,j),其中(i,j)满足1≤i<j≤n. 的 ...

  5. (三)TestNG

    1.testNG的部分注解 test测试方法都是执行顺序:并不是从上往下执行的,而是根据方法名ASCII码进行执行的,小的先执行 比如a比b先执行,1比2先执行,不管代码放的顺序是怎么样. impor ...

  6. [转]使用 Razor 进行递归操作

    本文转自:http://www.cnblogs.com/zbw911/archive/2013/01/10/2855025.html 做一个菜单,多级的会遇到递归的问题,打算在code中做一个递归方法 ...

  7. [转]Mysql几种索引类型的区别及适用情况

    此为转载文章,仅做记录使用,方便日后查看,原文链接:https://www.cnblogs.com/yuan-shuai/p/3225417.html Mysql几种索引类型的区别及适用情况   如大 ...

  8. ubuntu下安装MySQL8.0

    为了一劳永逸不每次都到处找资料,花了一下午时间做了这些.其中大部分是根据官方手册来的,后面部分谢谢大佬的帮助,超开心. 一.首先,将MySQL APT存储库添加到系统的软件存储库列表中 1.转到htt ...

  9. Celery-------项目目录

    在实际应用中Celery的目录是有规则的 要满足这样的条件才可以 目录Celery_task这个名字可以随意,但是这个目录下一定要有一个celery.py这个文件 from celery import ...

  10. 【转载】win7mysql5.7.18免安装配置教程

    闲着没事,装个mysql试试,小编以前都是用的linux,感觉mysql安装就是傻瓜式操作啊,第一次在windows系统上装,感觉出了很多问题,现在将整个过程分享给大家,希望大家在安装的时候少走弯路. ...