Problem A: Expanding Rods

When a thin rod of length L is heated n degrees, it expands to a new length L'=(1+n*C)*L, where C is the coefficient of heat expansion.

When a thin rod is mounted on two solid walls and then heated, it expands and takes the shape of a circular segment, the original rod being the chord of the segment.

Your task is to compute the distance by which the center of the rod is displaced.

The input contains multiple lines. Each line of input contains three non-negative numbers: the initial lenth of the rod in millimeters, the temperature change in degrees and the coefficient of heat expansion of the material. Input data guarantee that no rod expands by more than one half of its original length. The last line of input contains three negative numbers and it should not be processed.

For each line of input, output one line with the displacement of the center of the rod in millimeters with 3 digits of precision.

Sample input

1000 100 0.0001
15000 10 0.00006
10 0 0.001
-1 -1 -1

Output for sample input

61.329
225.020
0.000 二分法:二分高度H,计算出H对应的L弧长来推出答案 弧长根据补出一个园三角函数推出弧长即可
#include <cstdio>
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <string>
#include <map>
#include <vector>
#include <set>
#include <queue>
#include <stack>
#include <cctype>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
#define MAXN 10000+10
#define INF 1<<30
int MOD;
double l, n, c; double getL(double h){
double R = l*l/(8*h)+h/2;
return asin(l/(2*R))*(2*R);
} int main (){ while(scanf("%lf%lf%lf",&l, &n, &c) != EOF){
if(l < 0 && n < 0 && c < 0)
break;
double L = 0, R = l/2;
double tar = (1+n*c)*l;
for(int i = 0; i < 100; i++){
double mid = (L+R)/2;
if(getL(mid) < tar)
L = mid;
else
R = mid;
}
printf("%.3lf\n",L);
}
return 0;
}

  

UVA 10668 Expanding Rods的更多相关文章

  1. UVA 10668 - Expanding Rods(数学+二分)

    UVA 10668 - Expanding Rods 题目链接 题意:给定一个铁棒,如图中加热会变成一段圆弧,长度为L′=(1+nc)l,问这时和原来位置的高度之差 思路:画一下图能够非常easy推出 ...

  2. POJ 1905 Expanding Rods

                           Expanding Rods Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 1 ...

  3. Expanding Rods(二分POJ1905)

    Expanding Rods Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 13688   Accepted: 3527 D ...

  4. poj 1905 Expanding Rods(木杆的膨胀)【数学计算+二分枚举】

                                                                                                         ...

  5. POJ 1905:Expanding Rods 求函数的二分

    Expanding Rods Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 13780   Accepted: 3563 D ...

  6. D - Expanding Rods POJ - 1905(二分)

    D - Expanding Rods POJ - 1905 When a thin rod of length L is heated n degrees, it expands to a new l ...

  7. POJ 1905 Expanding Rods(二分)

    Expanding Rods Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 20224 Accepted: 5412 Descr ...

  8. 1137 - Expanding Rods

    1137 - Expanding Rods    PDF (English) Statistics Forum Time Limit: 0.5 second(s) Memory Limit: 32 M ...

  9. LightOj1137 - Expanding Rods(二分+数学)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1137 题意:有一根绳子的长度为l,在有温度的情况下会变形为一个圆弧,长度为 l1 = ...

随机推荐

  1. 在测试时用到的一些mysql的小技巧(持续更新)

    经常使用的快捷键: 1.ctrl+q 打开查询窗口 2.ctrl+/ 注释sql语句 3.ctrl+shift +/ 解除注释 4.ctrl+r 运行查询窗口的sql语句 5.ctrl+shift+r ...

  2. 验证码 java实现的程序

    makeCheckcode.java package pic; import java.awt.Color; import java.awt.Font; import java.awt.Graphic ...

  3. CodeForces-1132C Painting the Fence

    题目链接 https://vjudge.net/problem/CodeForces-1132C 题面 Description You have a long fence which consists ...

  4. Android Studio的初体验

    在机缘巧合之下遇到了安卓开发,接触了Android Studio开始了漫长的改bug的道路,以下为简易版心酸历程 首先我需要成功安装Android Studio,由于我过于叛逆以及为了避免出错于是从一 ...

  5. Linux上删除空行的方法

    grep . data.txt grep-v'^$' data.txt grep'[^$]' data.txt sed'/^$/d' data.txt sed'/^\s*$/d' data.txt # ...

  6. Map.Entry遍历Map

    Map.entry是Java中的一个接口.每一个Map.entry代表一个map对象. 可以通过 Map是java中的接口,Map.Entry是Map的一个内部接口,它表示map中的一个实体(及一个k ...

  7. 解决hadoop 集群启动常见错误办法

    hadoop 集群常见错误解决办法 hadoop 集群常见错误解决办法: (一)启动Hadoop集群时易出现的错误: 1.   错误现象:Java.NET.NoRouteToHostException ...

  8. 【题解】HAOI2008硬币购物

    1A什么的实在是太开心啦~~洛谷P1450 这道题目主要是考察对于容斥原理的掌握. 首先,注意到如果不存在有关硬币数量的限制而单纯询问方案的总数,就是一个简单的完全背包.这个思路提醒我们:如果能够求出 ...

  9. 【题解】JSOI2009游戏

    真的没想到...果然反应太迟钝,看到题目毫无思路,一点联想都没有. 按照网上博客的说法:一眼棋盘染色二分->二分图->最大匹配->BINGO?果然我还是太弱了…… 我们将棋盘黑白染色 ...

  10. [NOIP2017 TG D2T2]宝藏

    题目大意:给定一个有重边,边有权值的无向图.从某一个点出发,求到达所有的点需要的最少费用,并且限制两点之间只有一条路径.费用的计算公式为:所有边的费用之和.而边$x->y$的费用就为:$y$到初 ...