BZOJ3141:[HNOI2013]旅行
浅谈队列:https://www.cnblogs.com/AKMer/p/10314965.html
题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=3141
很好的一道单调队列题……
先把\(0\)变成\(-1\),然后\(sum_i\)表示\([i,n]\)的后缀和。
首先考虑子段和最大值最小是多少。
首先,答案最小不会小于\(\lceil \frac{|sum_1|}{m}\rceil\)
其次,假设相邻的\(1\)或\(-1\)全部合并在一起变成\(0\)抵消掉(因为不管放在哪一段都无影响),留下\(|sum_1|\)个\(1\)或\(-1\),直接均分,刚好可以使最大值是\(\lceil \frac{|sum_1|}{m}\rceil\),所以答案就是这个玩意儿。
但是当\(sum_1\)等于\(0\)且后缀和为\(0\)的\(pos\)个数小于\(m\)时答案就是\(1\),因为分不出那么多段。
在知道答案后,我们再分情况讨论字典序:
当答案等于\(0\)时,直接把后缀和等于\(0\)的前一个点拎出来用单调队列搞搞就行。
当答案不等于\(0\),我们考虑假设第\(i\)段结尾的是\(lst\),那么第\(i+1\)段结尾处后一个位置的后缀和\(s\)要满足\(|sum[lst+1]-s|\leqslant ans\)。
展开一下:\(sum[lst+1]-ans\leqslant s \leqslant sum[lst+1]+ans\)
然后对于每种不同的后缀和维护一个单调队列即可。
每次根据上面的等式枚举下一个\(s\),然后对于子问题\(\lceil\frac{|s|}{m-i}\rceil\)不会超过全局问题的答案,并且后面够分\(m-i\)段,就把他丢到对应的单调队列里面。然后对于每个单调队列的队头拿出来比较选最好的一个就行了。
为啥要开多个单调队列而不是用一个单调队列呢?因为对于每个子问题,所满足的后缀和\(s\)并不一样,不能用当前子问题的\(s'\)把\(s''\)的队头弹掉了,万一下一次只支持\(s''\)而不支持\(s'\)并且之前被你弹掉的那个就是答案呢?
剩下的细节见代码吧。
时间复杂度:\(O(n\sqrt{n})\)
空间复习度:\(O(n)\)
代码如下:
#include <cstdio>
#include <algorithm>
using namespace std;
const int maxn=1e6+6;
int n,m,ans,num,val;
int id[maxn],like[maxn],sum[maxn],cnt[maxn];
int tot[maxn],tmp[maxn],list[maxn],stk[maxn];
int read() {
int x=0,f=1;char ch=getchar();
for(;ch<'0'||ch>'9';ch=getchar())if(ch=='-')f=-1;
for(;ch>='0'&&ch<='9';ch=getchar())x=x*10+ch-'0';
return x*f;
}
struct Queue {
int head,tail;
void push_back(int pos) {
while(head!=tail&&id[list[tail-1]]>id[pos])tail--;
list[tail++]=pos;
}
int front() {return list[head];}
void pop_front() {if(head!=tail)head++;}
bool empty() {return head==tail;}
}alpha[maxn<<1],*q=alpha+maxn;
struct Stack {
int tp,cnt;
void push_back(int pos) {cnt++;stk[++tp]=pos;}
bool empty() {return !cnt;}
int top() {return stk[tp];}
void pop() {tp--;cnt--;}
}beta[maxn<<1],*s=beta+maxn;
int main() {
n=read(),m=read();
for(int i=1;i<=n;i++)
id[i]=read(),like[i]=read();
for(int i=n;i;i--) {
like[i]-=(!like[i]);
tmp[i]=sum[i]=sum[i+1]+like[i];
cnt[i]=cnt[i+1]+(!sum[i]);
}
ans=sum[1]?(abs(sum[1])+m-1)/m:cnt[1]<m;
if(!ans) {
for(int i=1,j=2;i<m;i++) {
for(;j<=n&&cnt[j+1]>=m-i;j++)
if(!sum[j+1])q[0].push_back(j);
int res=q[0].front();q[0].pop_front();
printf("%d ",id[res]);
}
}
else {
sort(tmp+1,tmp+n+1);
num=unique(tmp+1,tmp+n+1)-tmp-1;
for(int i=1;i<=n;i++)
tot[lower_bound(tmp+1,tmp+num+1,sum[i])-tmp]++;
for(int i=1;i<=num;i++) {
s[tmp[i]].tp=val;
q[tmp[i]].head=q[tmp[i]].tail=val;
val+=tot[i];
}
int lst=0;id[n+1]=n+1;
for(int i=n;i>1;i--)s[sum[i]].push_back(i-1);
for(int i=1;i<m;i++) {
int res=n+1;
for(int j=sum[lst+1]-ans;j<=sum[lst+1]+ans;j++) {
if((abs(j)+m-i-1)/(m-i)>ans)continue;
while(!s[j].empty()&&n-s[j].top()>=m-i) {
if(s[j].top()>lst)q[j].push_back(s[j].top());
s[j].pop();
}
while(!q[j].empty()&&q[j].front()<=lst)q[j].pop_front();
if(!q[j].empty()&&id[q[j].front()]<id[res])res=q[j].front();
}
lst=res;printf("%d ",id[res]);
}
}
printf("%d\n",id[n]);
return 0;
}
BZOJ3141:[HNOI2013]旅行的更多相关文章
- bzoj3141: [Hnoi2013]旅行
Description Input 第 一行为两个空格隔开的正整数n, m,表示旅行的城市数与旅行所花的月数.接下来n行,其中第 i行包含两个空格隔开的整数Ai和Bi,Ai表示他第i个去的城市编号 ...
- BZOJ3141 Hnoi2013 游走 【概率DP】【高斯消元】*
BZOJ3141 Hnoi2013 Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点 ...
- 3141: [Hnoi2013]旅行 - BZOJ
Description Input 第一行为两个空格隔开的正整数n, m,表示旅行的城市数与旅行所花的月数.接下来n行,其中第 i行包含两个空格隔开的整数Ai和Bi,Ai表示他第i个去的城市编号.Bi ...
- HNOI2013旅行
一道欺负我智商的题... 本来想打单调队列优化dp的,结果看到算法标签就点了此题 洛谷题面 首先你要理解题意,蒟蒻理解了好久.它就是说,给你一个由1和-1组成的数列,让你分成m段,并让这m段区间和最大 ...
- 【LG3229】[HNOI2013]旅行
题面 洛谷 题解 勘误:新的休息点a需要满足的条件2为那一部分小于等于ans 代码 \(100pts\) #include <iostream> #include <cstdio&g ...
- Hnoi2013题解 bzoj3139~3144
话说好久没写题(解)了.. 先贴份题解:http://wjmzbmr.com/archives/hnoi-2013-%E9%A2%98%E8%A7%A3/(LJ神题解..Lazycal表示看不懂..) ...
- [HNOI2013]题解
代码在最后 [HNOI2013]比赛 记忆化搜索 把每一位还需要多少分用\(27\)进制压进\(long\) \(long\),\(map\)记忆化一下即可 [HNOI2013]消毒 先考虑在二维平面 ...
- # HNOI2012 ~ HNOI2018 题解
HNOI2012 题解 [HNOI2012]永无乡 Tag:线段树合并.启发式合并 联通块合并问题. 属于\(easy\)题,直接线段树合并 或 启发式合并即可. [HNOI2012]排队 Tag:组 ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
随机推荐
- spring boot未配置数据源报错
我拷贝了一个springboot 项目,然后去掉了数据源配置启动报错 : Cannot determine embedded database driver class for database ty ...
- level-4
[1.网页乱码的问题是如何产生的.怎么样解决?] 造成html网页乱码原因主要是html源代码内中文字内容与html编码不同造成.主要情况有以下三种: 1.比如网页源代码是gbk的编码,而内容中的中文 ...
- 【Head First Servlets and JSP】笔记5:HttpServletResponse resp
[HttpServletResponse resp] [由servlet处理响应] 1.一般可以用通过resp获得一个输出流(writer),然后通过输出流将HTML写入响应.例如: resp.set ...
- POI 百万数据导出
poi 导出主类 package test; import java.io.File; import java.io.FileOutputStream; import java.lang.reflec ...
- git上面创建个人简历-链接
github创建个人在线简历: https://segmentfault.com/a/1190000006820290
- OC_链表实现队列
@interface Node : NSObject @property(nonatomic,strong)NSString *value; @property(nonatomic,strong)No ...
- INSPIRED启示录 读书笔记 - 第11章 评估产品机会
市场需求文档 大多数的公司产品选择权是由高管.市场部门.开发团队甚至是大客户,在这种情况下公司会跳过市场需求文档或是误写成产品规范文档,回避评估产品机会 在正常情况下,应该是由业务人员会撰写一份论证产 ...
- Tomcat学习之Wrapper
Tomcat学习之Wrapper 分类: WEB服务器2012-08-30 22:16 1547人阅读 评论(0) 收藏 举报 tomcatservletwrapperservletslistexce ...
- SaaS架构经验总结
2B Saas系统最近几年都很火.很多创业公司都在尝试创建企业级别的应用 cRM, HR,销售, Desk Saas系统.很多Saas创业公司也拿了大额风投.毕竟Saas相对传统软件的优势非常明显. ...
- spring boot: 条件注解@Condition
@Conditional根据满足某一个特定的条件创建一个特定的Bean(基于条件的Bean的创建,即使用@Conditional注解). 比方说,当一个jar包在一个类的路径下的时候,自动配置一个或多 ...