Fibonacci Tree

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 2952    Accepted Submission(s): 947

Problem Description
  Coach Pang is interested in Fibonacci numbers while Uncle Yang wants him to do some research on Spanning Tree. So Coach Pang decides to solve the following problem:

  Consider a bidirectional graph G with N vertices and M edges. All edges are painted into either white or black. Can we find a Spanning Tree with some positive Fibonacci number of white edges?

(Fibonacci number is defined as 1, 2, 3, 5, 8, ... )

 
Input
  The first line of the input contains an integer T, the number of test cases.

  For each test case, the first line contains two integers N(1 <= N <= 105) and M(0 <= M <= 105).

  Then M lines follow, each contains three integers u, v (1 <= u,v <= N, u<> v) and c (0 <= c <= 1), indicating an edge between u and v with a color c (1 for white and 0 for black).
 
Output
  For each test case, output a line “Case #x: s”. x is the case number and s is either “Yes” or “No” (without quotes) representing the answer to the problem.
 
Sample Input
2
4 4
1 2 1
2 3 1
3 4 1
1 4 0
5 6
1 2 1
1 3 1
1 4 1
1 5 1
3 5 1
4 2 1
 
Sample Output
Case #1: Yes
Case #2: No
 
Source

2013 Asia Chengdu Regional Contest

有n个点,m条边。有黑白之分,问连通全部点时的边中,白边的个数能不能是斐波那契数列中的一个数

思路:先用白边连图。求出白边的个数,再先用黑边连图,求出白边另个值,。这两个值就是白边个数的取值范围 

2015,7,30

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
#define M 100000+10
struct node{
int s,e,val;
}sd[M];
int x[M];
int a[55]; bool cmp1(node a,node b){
return a.val>b.val;
}
bool cmp2(node a,node b){
return a.val<b.val;
}
void init()
{
for(int i=0;i<M;i++)
x[i]=i;
}
int find(int k)
{
if(x[k]==k) return k;
x[k]=find(x[k]);
return x[k];
}
int main()
{
int t,m,n,v=1,i;
int num,start,end; a[1]=1; a[2]=2;
for(i=3;i<55;i++)//由于边最多有100000条,所以斐波那契数大于这个数时就能够了,55足够了
a[i]=a[i-1]+a[i-2]; scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&m);
for(i=0;i<m;i++)
scanf("%d%d%d",&sd[i].s,&sd[i].e,&sd[i].val); sort(sd,sd+m,cmp2);
num=0; init();
for(i=0;i<m;i++){
int fa=find(sd[i].s);
int fb=find(sd[i].e);
if(fa!=fb){
x[fa]=fb;
if(sd[i].val==1)
num++;
}
}
start=num; sort(sd,sd+m,cmp1);
num=0; init();
for(i=0;i<m;i++){
int fa=find(sd[i].s);
int fb=find(sd[i].e);
if(fa!=fb){
x[fa]=fb;
if(sd[i].val==1)
num++;
}
}
end=num; int ok=0;
for(i=1;i<=n;i++){
if(find(i)!=find(1)){
ok=1;
break;
}
}
printf("Case #%d: ",v++);
if(ok) printf("No\n");//假设没有连通全部点直接输出No
else{
for(i=1;i<50;i++){//注意这个i要从1開始,由于输入1个点0条边时要输出No。。我找了半天错= =+
if(a[i]>= start && a[i]<=end){
ok=1;
break;
}
}
if(ok) printf("Yes\n");
else printf("No\n");
}
}
return 0;
}

hdu 4786 Fibonacci Tree(最小生成树)的更多相关文章

  1. HDU 4786 Fibonacci Tree 最小生成树

    Fibonacci Tree 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=4786 Description Coach Pang is intere ...

  2. hdu 4786 Fibonacci Tree (2013ACMICPC 成都站 F)

    http://acm.hdu.edu.cn/showproblem.php?pid=4786 Fibonacci Tree Time Limit: 4000/2000 MS (Java/Others) ...

  3. HDU 4786 Fibonacci Tree(生成树,YY乱搞)

    http://acm.hdu.edu.cn/showproblem.php? pid=4786 Fibonacci Tree Time Limit: 4000/2000 MS (Java/Others ...

  4. HDU 4786 Fibonacci Tree (2013成都1006题)

    Fibonacci Tree Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  5. HDU 4786 Fibonacci Tree

    Fibonacci Tree Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) P ...

  6. 【HDU 4786 Fibonacci Tree】最小生成树

    一个由n个顶点m条边(可能有重边)构成的无向图(可能不连通),每条边的权值不是0就是1. 给出n.m和每条边的权值,问是否存在生成树,其边权值和为fibonacci数集合{1,2,3,5,8...}中 ...

  7. HDU 4786 Fibonacci Tree (2013成都1006题) 最小生成树+斐波那契

    题意:问生成树里能不能有符合菲波那切数的白边数量 思路:白边 黑边各优先排序求最小生成树,并统计白边在两种情况下数目,最后判断这个区间就可以.注意最初不连通就不行. #include <stdi ...

  8. hdu 4786 Fibonacci Tree 乱搞 智商题目 最小生成树

    首先计算图的联通情况,如果图本身不联通一定不会出现生成树,输出"NO",之后清空,加白边,看最多能加多少条,清空,加黑边,看能加多少条,即可得白边的最大值与最小值,之后判断Fibo ...

  9. HDU 4786 Fibonacci Tree 生成树

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=4786 题意:有N个节点(1 <= N <= 10^5),M条边(0 <= M <= ...

随机推荐

  1. gns3 接口说明 转

    Dynamips 支持的模块首先从C7200 开始Slot 0:C7200-IO-FE <------> 支持1 个Fastethernet 接口C7200-IO-2FE <---- ...

  2. Matlab设置Legend横排、分块

    高级用法1:指定legend显示的位置: legend({'str1','str2','strn'},'Location','SouthEast'); 比较鸡肋,画好图后树手动拖动就好了 高级用法2: ...

  3. 获取XIB子视图的两个方法

    创建了一个XIB文件 CommentCell.xib,并设置好UIImageView的tag为100,昵称UILabel的tag为101,时间的UILabel的tag为102,并制定cell为Comm ...

  4. ASP.NET MVC DropdownList的使用

    1:直接使用HTML代码写 <select name="year"> <option value="2011">2010</opt ...

  5. Redis设置使用几号库

    Redis中SpringBoot项目中的配置: 1.引入 spring-boot-starter-redis(POM.XML) <dependency> <groupId>or ...

  6. MacBook安装office

    已更新至最新版Microsoft Office 2016 v16.13.18052304,完美支持macOS High Sierra 10.13.4,破解方法很简单,先安装Microsoft_Offi ...

  7. x-forwarded-for之深度挖掘

    如今利用nginx做负载均衡的实例已经很多了,针对不同的应用场合,还有很多需要注意的地方,本文要说的就是在通过CDN 后到达nginx做负载均衡时请求头中的X-Forwarded-For项到底发生了什 ...

  8. http://www.360doc.com/content/12/0516/14/1671317_211422841.shtml

    http://www.360doc.com/content/12/0516/14/1671317_211422841.shtml

  9. 【网络】再谈select, iocp, epoll,kqueue及各种I/O复用机制 && Reactor与Proactor的概念

    首先,介绍几种常见的I/O模型及其区别,如下: blocking I/O nonblocking I/O I/O multiplexing (select and poll) signal drive ...

  10. Spark createDirectStream 维护 Kafka offset(Scala)

    createDirectStream方式需要自己维护offset,使程序可以实现中断后从中断处继续消费数据. KafkaManager.scala import kafka.common.TopicA ...