Fibonacci Tree

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 2952    Accepted Submission(s): 947

Problem Description
  Coach Pang is interested in Fibonacci numbers while Uncle Yang wants him to do some research on Spanning Tree. So Coach Pang decides to solve the following problem:

  Consider a bidirectional graph G with N vertices and M edges. All edges are painted into either white or black. Can we find a Spanning Tree with some positive Fibonacci number of white edges?

(Fibonacci number is defined as 1, 2, 3, 5, 8, ... )

 
Input
  The first line of the input contains an integer T, the number of test cases.

  For each test case, the first line contains two integers N(1 <= N <= 105) and M(0 <= M <= 105).

  Then M lines follow, each contains three integers u, v (1 <= u,v <= N, u<> v) and c (0 <= c <= 1), indicating an edge between u and v with a color c (1 for white and 0 for black).
 
Output
  For each test case, output a line “Case #x: s”. x is the case number and s is either “Yes” or “No” (without quotes) representing the answer to the problem.
 
Sample Input
2
4 4
1 2 1
2 3 1
3 4 1
1 4 0
5 6
1 2 1
1 3 1
1 4 1
1 5 1
3 5 1
4 2 1
 
Sample Output
Case #1: Yes
Case #2: No
 
Source

2013 Asia Chengdu Regional Contest

有n个点,m条边。有黑白之分,问连通全部点时的边中,白边的个数能不能是斐波那契数列中的一个数

思路:先用白边连图。求出白边的个数,再先用黑边连图,求出白边另个值,。这两个值就是白边个数的取值范围 

2015,7,30

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
#define M 100000+10
struct node{
int s,e,val;
}sd[M];
int x[M];
int a[55]; bool cmp1(node a,node b){
return a.val>b.val;
}
bool cmp2(node a,node b){
return a.val<b.val;
}
void init()
{
for(int i=0;i<M;i++)
x[i]=i;
}
int find(int k)
{
if(x[k]==k) return k;
x[k]=find(x[k]);
return x[k];
}
int main()
{
int t,m,n,v=1,i;
int num,start,end; a[1]=1; a[2]=2;
for(i=3;i<55;i++)//由于边最多有100000条,所以斐波那契数大于这个数时就能够了,55足够了
a[i]=a[i-1]+a[i-2]; scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&m);
for(i=0;i<m;i++)
scanf("%d%d%d",&sd[i].s,&sd[i].e,&sd[i].val); sort(sd,sd+m,cmp2);
num=0; init();
for(i=0;i<m;i++){
int fa=find(sd[i].s);
int fb=find(sd[i].e);
if(fa!=fb){
x[fa]=fb;
if(sd[i].val==1)
num++;
}
}
start=num; sort(sd,sd+m,cmp1);
num=0; init();
for(i=0;i<m;i++){
int fa=find(sd[i].s);
int fb=find(sd[i].e);
if(fa!=fb){
x[fa]=fb;
if(sd[i].val==1)
num++;
}
}
end=num; int ok=0;
for(i=1;i<=n;i++){
if(find(i)!=find(1)){
ok=1;
break;
}
}
printf("Case #%d: ",v++);
if(ok) printf("No\n");//假设没有连通全部点直接输出No
else{
for(i=1;i<50;i++){//注意这个i要从1開始,由于输入1个点0条边时要输出No。。我找了半天错= =+
if(a[i]>= start && a[i]<=end){
ok=1;
break;
}
}
if(ok) printf("Yes\n");
else printf("No\n");
}
}
return 0;
}

hdu 4786 Fibonacci Tree(最小生成树)的更多相关文章

  1. HDU 4786 Fibonacci Tree 最小生成树

    Fibonacci Tree 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=4786 Description Coach Pang is intere ...

  2. hdu 4786 Fibonacci Tree (2013ACMICPC 成都站 F)

    http://acm.hdu.edu.cn/showproblem.php?pid=4786 Fibonacci Tree Time Limit: 4000/2000 MS (Java/Others) ...

  3. HDU 4786 Fibonacci Tree(生成树,YY乱搞)

    http://acm.hdu.edu.cn/showproblem.php? pid=4786 Fibonacci Tree Time Limit: 4000/2000 MS (Java/Others ...

  4. HDU 4786 Fibonacci Tree (2013成都1006题)

    Fibonacci Tree Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  5. HDU 4786 Fibonacci Tree

    Fibonacci Tree Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) P ...

  6. 【HDU 4786 Fibonacci Tree】最小生成树

    一个由n个顶点m条边(可能有重边)构成的无向图(可能不连通),每条边的权值不是0就是1. 给出n.m和每条边的权值,问是否存在生成树,其边权值和为fibonacci数集合{1,2,3,5,8...}中 ...

  7. HDU 4786 Fibonacci Tree (2013成都1006题) 最小生成树+斐波那契

    题意:问生成树里能不能有符合菲波那切数的白边数量 思路:白边 黑边各优先排序求最小生成树,并统计白边在两种情况下数目,最后判断这个区间就可以.注意最初不连通就不行. #include <stdi ...

  8. hdu 4786 Fibonacci Tree 乱搞 智商题目 最小生成树

    首先计算图的联通情况,如果图本身不联通一定不会出现生成树,输出"NO",之后清空,加白边,看最多能加多少条,清空,加黑边,看能加多少条,即可得白边的最大值与最小值,之后判断Fibo ...

  9. HDU 4786 Fibonacci Tree 生成树

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=4786 题意:有N个节点(1 <= N <= 10^5),M条边(0 <= M <= ...

随机推荐

  1. 【R实践】时间序列分析之ARIMA模型预测___R篇

    时间序列分析之ARIMA模型预测__R篇 之前一直用SAS做ARIMA模型预测,今天尝试用了一下R,发现灵活度更高,结果输出也更直观.现在记录一下如何用R分析ARIMA模型. 1. 处理数据 1.1. ...

  2. 浅谈Uber与滴滴快的提供差异化服务带来的商业模式思考

    一.引言 滴滴和快的烧钱的时代已经过去,在那个时代我们消费者着实得到了不少实惠.自从他们温柔的在一起之后,这种实惠就木有了.让我不禁感叹坐车的几率有降低了50%.前段时间,Uber悄无声息的进入我的视 ...

  3. python 输出所有大小写字母, range()以及列表切片

    所以在写的时候,只要把它们的ASCII列出,并转化成字符型chr 即可. print [chr(i) for i in range(65,91)]#所有大写字母 print [chr(i) for i ...

  4. Microsoft SQL Server 2008 R2

    1概述 Microsoft SQL Server 2008 R2 提供完整的企业级技术与工具,帮助您以最低的总拥有成本获得最有价值的信息.您可以充分享受高性能,高可用性,高安全性,使用更多的高效管理与 ...

  5. linux设备驱动:中断的实现

    一.什么是中断 中断分两种: 1)中断,又叫外部中断或异步中断,它的产生是由于外设向处理器发出中断请求.其中外部中断也有两种,这是由配置寄存器设定的:普通中断请求(IRQ)和快速中断请求(FIQ).一 ...

  6. nagios系列教程地址

    http://www.sosidc.com/sort/10/page/3 http://www.sosidc.com/sort/10/page/2 http://www.sosidc.com/sort ...

  7. 小二助手(react应用框架)-http访问

    浏览地址http://118.25.217.253:4000 账号test密码123   qq讨论群:836719189 要写这个系统,就需要数据来源,让我们先来看看如果通过客户端调用服务端api拿到 ...

  8. Vue组件开发实例(详细注释)

    Vue组件开发实例: <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> &l ...

  9. Java练习:tips.Print

    在学习Java时和<编程导论(Java)>中,大量使用了重载的System.out.println()等类似的输出语句.特别是书籍中,一行语句中包括System.out.println会显 ...

  10. Required MultipartFile parameter 'file' is not present error

    <input type=“file”>  中的name 与id 属性 与  addbanner(@RequestParam("file") MultipartFile ...