题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3569

Description

神校XJ之学霸兮,Dzy皇考曰JC。
摄提贞于孟陬兮,惟庚寅Dzy以降。
纷Dzy既有此内美兮,又重之以修能。
遂降临于OI界,欲以神力而凌♂辱众生。
 
今Dzy有一魞歄图,其上有N座祭坛,又有M条膴蠁边。
时而Dzy狂WA而怒发冲冠,神力外溢,遂有K条膴蠁边灰飞烟灭。
而后俟其日A50题则又令其复原。(可视为立即复原)
然若有祭坛无法相互到达,Dzy之神力便会大减,于是欲知其是否连通。

Input

第一行N,M,接下来M行x,y:表示M条膴蠁边,依次编号;接下来一行Q,接下来Q行:每行第一个数K而后K个编号c1~cK,表示K条边,编号为c1~cK。
为了体现在线,c1~cK均需异或之前回答为连通的个数。

Output

对于每个询问输出:连通则为‘Connected’,不连通则为‘Disconnected’(不加引号)

Sample Input

5 10
2 1
3 2
4 2
5 1
5 3
4 1
4 3
5 2
3 1
5 4
5
1 1
3 7 0 3
4 0 7 4 6
2 2 7
4 5 0 2 13

Sample Output

Connected
Connected
Connected
Connected
Disconnected

HINT

N≤100000,M≤500000,Q≤50000,1≤K≤15,数据保证没有重边与自环

Tip:请学会使用搜索引擎

题意概述:

  给出一张图,每次假设删除图上K条边,询问图是否连通。

分析:

  这操作还是很厉害的......

  对于图的问题可以借助和图有关的树来分析。

  借助DFS树,我们发现当我们删除一些边的时候,只有我们把某条树边以及所有跨越它的非树边删除掉之后这个图就不连通了。

  那么我先现在需要判断给出的边中有没有这样的一些边出现。如果有,那么图就不连通,否则就依旧连通。

  怎么判断呢?想到异或,当一些线性相关的数字一起出现的时候,它们的其中一些异或和为0。对于每一条非树边,将其随机一个权值,然后对其跨越的所有边异或上它的权值。每一次询问的时候取出来求线性基,如果线性基插入过程中有数字变成了0,说明给出的数字不是线性不相关。

  因为K<=15,所以说可以直接用rand()函数(实在不放心可以手动随机二进制位)。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<queue>
#include<set>
#include<map>
#include<vector>
#include<cctype>
using namespace std;
const int maxn=;
const int maxm=; int N,M,Q;
struct edge{ int to,next; }E[maxm<<];
int first[maxn],np,fl[maxn],delt[maxn],dfn[maxn],dfs_clock,w[maxm],vis[maxn];
struct Linear_Base{
static const int up=;
int b[up];
void init(){ memset(b,,sizeof(b)); }
bool ins(int x){
for(int i=up-;i>=;i--) if((<<i)&x){
if(!b[i]) { b[i]=x; break; }
else x^=b[i];
}
return x!=;
}
}lb; void add_edge(int u,int v)
{
E[++np]=(edge){v,first[u]};
first[u]=np;
}
void data_in()
{
scanf("%d%d",&N,&M);
int x,y;
for(int i=;i<=M;i++){
scanf("%d%d",&x,&y);
add_edge(x,y); add_edge(y,x);
}
scanf("%d",&Q);
}
void DFS(int i,int fp)
{
dfn[i]=++dfs_clock,fl[i]=fp;
for(int p=first[i];p;p=E[p].next){
if(fp==(p-^)+) continue;
int j=E[p].to;
if(dfn[j]){
if(dfn[j]<dfn[i]){
w[p+>>]=rand()+;
delt[i]^=w[p+>>],delt[j]^=w[p+>>];
}
continue;
}
DFS(j,p);
w[fp+>>]^=w[p+>>];
}
w[fp+>>]^=delt[i];
}
void work()
{
srand();
DFS(,);
int k,x,cnt=;
for(int i=;i<=Q;i++){
scanf("%d",&k);
bool ok=; lb.init();
for(int j=;j<=k;j++){
scanf("%d",&x);
if(ok&&!lb.ins(w[x^cnt])) ok=;
}
if(ok) puts("Connected"),cnt++;
else puts("Disconnected");
}
}
int main()
{
data_in();
work();
return ;
}

BZOJ 3569 DZY Loves Chinese II 树上差分+线性基的更多相关文章

  1. BZOJ 3569: DZY Loves Chinese II(线性基)

    传送门 解题思路 首先构造出一个生成树,考虑不连接的情况.假设连通两点的非树边和树边都断掉后不连通,那么可以给所有的非树边随机一个互不相同的值,然后树边的权值为过他两端点的非树边权值的异或和,这个可以 ...

  2. BZOJ 3569: DZY Loves Chinese II [高斯消元XOR 神题]

    http://www.lydsy.com/JudgeOnline/problem.php?id=3569 题意:多次询问一个无向连通图当图中某k条边消失时这个图是否联通 强制在线 太神啦啦啦啦啦啦啦啦 ...

  3. bzoj 3569 DZY Loves Chinese II 随机算法 树上倍增

    题意:给你一个n个点m条边的图,有若干组询问,每次询问会选择图中的一些边删除,删除之后问此图是否联通?询问之间相互独立.此题强制在线. 思路:首先对于这张图随便求一颗生成树,对于每一条非树边,随机一个 ...

  4. BZOJ 3569 DZY Loves Chinese II

    Description 神校XJ之学霸兮,Dzy皇考曰JC. 摄提贞于孟陬兮,惟庚寅Dzy以降. 纷Dzy既有此内美兮,又重之以修能. 遂降临于OI界,欲以神力而凌♂辱众生. 今Dzy有一魞歄图,其上 ...

  5. BZOJ 3569 DZY Loves Chinese II ——线性基

    [题目分析] 腊鸡题目卡题面. 大概的意思就是给一张无向图,每次删掉其中一些边,问是否联通. 首先想到的是Bitset,可以做到n^2/64.显然过不了. 然而这是lyd在给我们讲线性基的时候的一道题 ...

  6. BZOJ 3563 DZY Loves Chinese

    Description 神校XJ之学霸兮,Dzy皇考曰JC. 摄提贞于孟陬兮,惟庚寅Dzy以降. 纷Dzy既有此内美兮,又重之以修能. 遂降临于OI界,欲以神力而凌♂辱众生. 今Dzy有一魞歄图,其上 ...

  7. [BZOJ3569]DZY Loves Chinese II(随机化+线性基)

    3569: DZY Loves Chinese II Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1515  Solved: 569[Submit][S ...

  8. 【BZOJ3563/3569】DZY Loves Chinese II 线性基神题

    [BZOJ3563/3569]DZY Loves Chinese II Description 神校XJ之学霸兮,Dzy皇考曰JC. 摄提贞于孟陬兮,惟庚寅Dzy以降. 纷Dzy既有此内美兮,又重之以 ...

  9. 【BZOJ3569】DZY Loves Chinese II

    [BZOJ3569]DZY Loves Chinese II 题面 bzoj 题目大意: 给你一张\(N(1\leq N\leq 10^5)\)个点\(M(1\leq M\leq 5\times 10 ...

随机推荐

  1. Access用OleDbParameter更新/插入数据

    /// <summary> /// 更新一条数据 /// </summary> public void Update(ZPY.Model.News model) { Strin ...

  2. .net mvc里AutoMapper更为便捷的使用方法

    前言:AutoMapper的下载安装我就不多说了,网上百度一大堆.今天我就说说它的更为简单的使用,什么叫更为简单呢?按照一般的使用方法,我们首先建DTO,然后建每个对应的Profile,然后还要把每个 ...

  3. MySql Connector/C++8结果集处理Demo

    #include <iostream> #include <exception> #include <mysqlx/xdevapi.h> using std::co ...

  4. 关系型数据库设计——E-R图

    一.数据管理技术的三个发展阶段: 1)人工管理阶段(20世纪50年代中期) 特点:数据不保存:应用程序管理数据:数据不共享:数据没有独立性: 2)文件系统阶段(20世纪50年代后—60年代)特点:数据 ...

  5. SHOPEX快递单号查询插件圆通V8.2专版

    SHOPEX快递物流单号查询插件特色 本SHOPEX快递物流单号跟踪插件提供国内外近2000家快递物流订单单号查询服务例如申通快递.顺丰快递.圆通快递.EMS快递.汇通快递.宅急送快递.德邦物流.百世 ...

  6. Leecode刷题之旅-C语言/python-100相同的树

    /* * @lc app=leetcode.cn id=100 lang=c * * [100] 相同的树 * * https://leetcode-cn.com/problems/same-tree ...

  7. C# 测量程序运行时间

    using System.Diagnostics; Stopwatch watch = new Stopwatch(); watch.Start(); /* 需要测量运行时间的程序 */ watch. ...

  8. 006---hashlib模块

    hashlib模块 HASH 一般翻译成散列,也可以叫哈希. 把任意长度的输入通过散列算法变换成固定的长度. 该转换是一种压缩映射 MD5 输入任意长度的信息,经过处理.输出为128位的信息(数字指纹 ...

  9. 03---Nginx配置文件

    #启动子进程程序默认用户#user nobody;#一个主进程和多个工作进程.工作进程是单进程的,且不需要特殊授权即可运行:这里定义的是工作进程数量worker_processes 1; #全局错误日 ...

  10. (数据科学学习手札18)二次判别分析的原理简介&Python与R实现

    上一篇我们介绍了Fisher线性判别分析的原理及实现,而在判别分析中还有一个很重要的分支叫做二次判别,本文就对二次判别进行介绍: 二次判别属于距离判别法中的内容,以两总体距离判别法为例,对总体G1,, ...