E. Intercity Travelling
time limit per test

1.5 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Leha is planning his journey from Moscow to Saratov. He hates trains, so he has decided to get from one city to another by car.

The path from Moscow to Saratov can be represented as a straight line (well, it's not that straight in reality, but in this problem we will consider it to be straight), and the distance between Moscow and Saratov is nn km. Let's say that Moscow is situated at the point with coordinate 00 km, and Saratov — at coordinate nn km.

Driving for a long time may be really difficult. Formally, if Leha has already covered ii kilometers since he stopped to have a rest, he considers the difficulty of covering (i+1)(i+1)-th kilometer as ai+1ai+1. It is guaranteed that for every i∈[1,n−1]i∈[1,n−1] ai≤ai+1ai≤ai+1. The difficulty of the journey is denoted as the sum of difficulties of each kilometer in the journey.

Fortunately, there may be some rest sites between Moscow and Saratov. Every integer point from 11 to n−1n−1 may contain a rest site. When Leha enters a rest site, he may have a rest, and the next kilometer will have difficulty a1a1, the kilometer after it — difficulty a2a2, and so on.

For example, if n=5n=5 and there is a rest site in coordinate 22, the difficulty of journey will be 2a1+2a2+a32a1+2a2+a3: the first kilometer will have difficulty a1a1, the second one — a2a2, then Leha will have a rest, and the third kilometer will have difficulty a1a1, the fourth — a2a2, and the last one — a3a3. Another example: if n=7n=7 and there are rest sites in coordinates 11 and 55, the difficulty of Leha's journey is 3a1+2a2+a3+a43a1+2a2+a3+a4.

Leha doesn't know which integer points contain rest sites. So he has to consider every possible situation. Obviously, there are 2n−12n−1different distributions of rest sites (two distributions are different if there exists some point xx such that it contains a rest site in exactly one of these distributions). Leha considers all these distributions to be equiprobable. He wants to calculate pp — the expected value of difficulty of his journey.

Obviously, p⋅2n−1p⋅2n−1 is an integer number. You have to calculate it modulo 998244353998244353.

Input

The first line contains one number nn (1≤n≤1061≤n≤106) — the distance from Moscow to Saratov.

The second line contains nn integer numbers a1a1, a2a2, ..., anan (1≤a1≤a2≤⋯≤an≤1061≤a1≤a2≤⋯≤an≤106), where aiai is the difficulty of ii-th kilometer after Leha has rested.

Output

Print one number — p⋅2n−1p⋅2n−1, taken modulo 998244353998244353.

Examples
input

Copy
2
1 2
output

Copy
5
input

Copy
4
1 3 3 7
output

Copy
60

理解题意题

  https://www.cnblogs.com/Dillonh/p/9313493.html

公式推导过程 看这个博客

 #include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int mod = ;
const LL maxn = 1e6 + ;
LL n,ans=,a[maxn],b[maxn];
int main() {
b[]=;
for (int i= ;i<maxn ;i++) b[i]=*b[i-]%mod;
scanf("%lld",&n);
for (int i= ;i<n ;i++) scanf("%lld",&a[i]);
for (int i= ;i<n ;i++)
ans=(ans+a[i]*((b[n--i]+((n-i-)*b[n---i]%mod))%mod)%mod)%mod;
printf("%lld\n",ans);
return ;
}

E. Intercity Travelling的更多相关文章

  1. Codeforces D. Intercity Travelling(区间组合)

    题目描述: D. Intercity Travelling time limit per test 1.5 seconds memory limit per test 256 megabytes in ...

  2. Codeforces 1009 E. Intercity Travelling(计数)

    1009 E. Intercity Travelling 题意:一段路n个点,走i千米有对应的a[i]疲劳值.但是可以选择在除终点外的其余n-1个点休息,则下一个点开始,疲劳值从a[1]开始累加.休息 ...

  3. Educational Codeforces Round 47 (Rated for Div. 2)E.Intercity Travelling

    题目链接 大意:一段旅途长度N,中间可能存在N-1个休息站,连续走k长度时,疲劳值为a1+a2+...+aka_1+a_2+...+a_ka1​+a2​+...+ak​,休息后a1a_1a1​开始计, ...

  4. CF1009E [Intercity Travelling]

    这道题先考虑一种暴力n方做法 设\(f_i\)表示到\(i\)点所有情况的困难度之和(\(f_0=0\)),\(pre_i=\sum_{j=1}^{i} a_j\) 考虑从点\(j\)中途不经过休息站 ...

  5. CodeForces - 1009E Intercity Travelling

    题面在这里! 可以发现全是求和,直接拆开算贡献就好了 #include<bits/stdc++.h> #define ll long long using namespace std; c ...

  6. Educational Codeforces Round 47 (Rated for Div. 2) :E. Intercity Travelling

    题目链接:http://codeforces.com/contest/1009/problem/E 解题心得: 一个比较简单的组合数学,还需要找一些规律,自己把方向想得差不多了但是硬是找不到规律,还是 ...

  7. Intercity Travelling CodeForces - 1009E (组合计数)

    大意: 有一段$n$千米的路, 每一次走$1$千米, 每走完一次可以休息一次, 每连续走$x$次, 消耗$a[1]+...+a[x]$的能量. 休息随机, 求消耗能量的期望$\times 2^{n-1 ...

  8. 1009E Intercity Travelling 【数学期望】

    题目:戳这里 题意:从0走到n,难度分别为a1~an,可以在任何地方休息,每次休息难度将重置为a1开始.求总难度的数学期望. 解题思路: 跟这题很像,利用期望的可加性,我们分析每个位置的状态,不管怎么 ...

  9. Codeforces 1009E Intercity Travelling | 概率与期望

    题目链接 题目大意: 一个人要从$A$地前往$B$地,两地相距$N$千米,$A$地在第$0$千米处,$B$地在第$N$千米处. 从$A$地开始,每隔$1$千米都有$\dfrac{1}{2}$的概率拥有 ...

随机推荐

  1. Date()日期函数浏览器兼容问题踩坑

    原文:Date()日期函数浏览器兼容问题踩坑 之前用layui做的一项目中,table中用到了日期格式化的问题.直接没多想,撸代码就完了呗,结果最近一段时间客户反馈说显示日期跟录入日期不一样(显示日期 ...

  2. 基于Ubuntu Server 16.04 LTS版本安装和部署Django之(五):测试项目

    基于Ubuntu Server 16.04 LTS版本安装和部署Django之(一):安装Python3-pip和Django 基于Ubuntu Server 16.04 LTS版本安装和部署Djan ...

  3. 删除txt文件内容

    删除txt文件里的 聊天记录的时间那一行 f = open("d:\\面试.txt", "r") g = open("d:\\英雄联盟ADC技巧.tx ...

  4. Memcached Hash算法

    本文来自网易云社区 作者:吕宗胜 Hash算法 1. Memcached Hash介绍 我们在前面的文章中已经介绍过了Memcached的内存管理方式,LRU的策略.由于Memcached的数据存储方 ...

  5. android中activity,window,view之间的关系

    activity:控制单元 window:承载模型 view:显示视图 几个小tip: 1.一个 Activity 构造的时候一定会构造一个 Window(PhoneWindow),并且只有一个 2. ...

  6. vue2.0 $emit $on组件通信

    在vue1.0中父子组件通信使用$dispatch 和 $broadcast,但是在vue2.0中$dispatch 和 $broadcast 已经被弃用. 因为基于组件树结构的事件流方式实在是让人难 ...

  7. 关于redis一些问题记录

    问题一:启动redis时出现警告,使用下列命令(已解决) 问题二:启动时,需要解决的警告(未解决) 问题三:使用自己的配置文件启动redis时,可能会遇到: Could not connect to ...

  8. Selenide 简单实现自动化测试

    Selenide 网址:http://selenide.org/ github 地址:https://github.com/codeborne/selenide Selenide 早些年一直使用,中间 ...

  9. 第七篇Python基本数据类型之数字&字符串&布尔值

    数字 写在最前,必须要会的:int() 整型 Python3里无论数字多长都用int表示,Python2里有int和Long表示,Long表示长整型 有关数字的常用方法,方法调用后面都必须带括号() ...

  10. Python 中的容器 collections

    写在之前 我们都知道 Python 中内置了许多标准的数据结构,比如列表,元组,字典等.与此同时标准库还提供了一些额外的数据结构,我们可以基于它们创建所需的新数据结构. Python 附带了一个「容器 ...