【题解】P1516 青蛙的约会(Exgcd)
洛谷P1516:https://www.luogu.org/problemnew/show/P1516
思路:
设两只青蛙跳了T步 则A的坐标为X+mT B的坐标为Y+nT
要使他们相遇 则满足:X+mT-(Y+nT)=L*t (t为整数)
即可推得:(n-m)*T+L*t=X-Y 由此可得 a*x+b*y=c
a1=a/gcd(n-m,L) b1=b/gcd(n-m,L) c1=c/gcd(n-m,L)
- 用exgcd求解上述公式得出一个解x,但这并不一定是最后的解
- 若(X-Y)%gcd(n-m,L)≠0 即gcd不整除c时 或者m=n时 即m-n=0 无解 否则跳到第3步
- 有解后:设d=gcd(n-m,L) 特解为x=x*(X-Y)/d 即x0=x1*c1 通解为x=x*(X-Y)/d+k(L/d) 即x=x0+k*b1
- 最小正整数解ans=(x%(L/d)+L/d)%(L/d) 即ans=(x%b1+b1)%b1
代码:
#include<iostream>
#include<cmath>
#include<cstdio>
using namespace std;
#define ll long long
ll x,y,m,n,l;
void exgcd(ll a,ll b,ll &d,ll &x,ll &y)
{
if(!b)
{
x=;
y=;
d=a;
}
else
{
exgcd(b,a%b,d,x,y);
int t=x;
x=y;
y=t-a/b*y;
}
}
int main()
{
ll a,b,d;
cin>>x>>y>>m>>n>>l;
if(n<m)
{
swap(m,n);
swap(x,y);//保证n-m>0
}
exgcd(n-m,l,d,a,b);//求出特解x0
if((x-y)%d!=||m==n)
cout<<"Impossible\n";//无解情况
else
cout<<(a*(x-y)/d%(l/d)+(l/d))%(l/d)<<endl;//输出最小正整数解
}
【题解】P1516 青蛙的约会(Exgcd)的更多相关文章
- P1516 青蛙的约会和P2421 [NOI2002]荒岛野人
洛谷 P1516 青蛙的约会 . 算是手推了一次数论题,以前做的都是看题解,虽然这题很水而且还交了5次才过... 求解方程\(x+am\equiv y+an \pmod l\)中,\(a\)的最小整数 ...
- P1516 青蛙的约会
P1516 青蛙的约会x+mt-p1L=y+nt-p2L(m-n)t+L(p2-p1)=y-x令p=p2-p1(m-n)t+Lp=y-x然后套扩欧就完事了 #include<iostream&g ...
- 洛谷 P1516 青蛙的约会 解题报告
P1516 青蛙的约会 题目描述 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件 ...
- 洛谷——P1516 青蛙的约会
P1516 青蛙的约会 题目描述 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件 ...
- 解题报告:luogu P1516 青蛙的约会
题目链接:P1516 青蛙的约会 考察拓欧与推式子\(qwq\). 题意翻译? 求满足 \[\begin{cases}md+x\equiv t\pmod{l}\\nd+y\equiv t\pmod{l ...
- POJ 1061 - 青蛙的约会 - [exgcd求解一元线性同余方程]
先上干货: 定理1: 如果d = gcd(a,b),则必能找到正的或负的整数k和l,使ax + by = d. (参考exgcd:http://www.cnblogs.com/dilthey/p/68 ...
- 洛谷 p1516 青蛙的约会 题解
dalao们真是太强了,吊打我无名蒟蒻 我连题解都看不懂,在此篇题解中,我尽量用语言描述,不用公式推导(dalao喜欢看公式的话绕道,这篇题解留给像我一样弱的) 进入正题 如果不会扩展欧里几德的话请先 ...
- 洛谷P1516 青蛙的约会
题目描述 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清 ...
- [P1516]青蛙的约会 (扩展欧几里得/中国剩余定理?)
每日做智推~ 一看就是一道数学题. 再看是一道公约数的题目. 标签是中国孙子定理. 题解是扩展欧几里得 (笑) 一开始没看数据范围 只有50分 开一个longlong就可以了 #include< ...
随机推荐
- 阅读redis源代码的一些体会
最近在学习redis及阅读redis等程序的源码时,有一些收获,特记录到下面. 1.第一步,阅读源代码借助最好可以跟踪的工具去读,如sourceinsight. 我使用的是windows7环境,又因为 ...
- mysql 存储过程(proceduce)查询一个表的结果插入另外一个表
公司的时间戳存证业务,对发版过程中间数据处理需要用到存储过程.对此做一个简短记录,以免遗忘. DROP procedure record_timestamp_deal ; ##创建存储过程 creat ...
- Django(5) session登录注销、csrf及中间件自定义、django Form表单验证(非常好用)
一.Django中默认支持Session,其内部提供了5种类型的Session供开发者使用: 数据库(默认) 缓存 文件 缓存+数据库 加密cookie 1.数据库Session 1 2 3 4 5 ...
- 浏览器后退->清除原页面div中填写的数据
需求说明:页面表单用前端用div布局,提交之后跳转到另一个页面,但是考虑到客户奇怪的脑回路,可能会点击浏览器的后退按钮,不知道是个体情况还是都是一样,原本div中填写的数据还依然存在,所以需要让页面在 ...
- JavaScript对象 创建对象(二)
组合使用构造函数和原型模式创建对象 function Person(name, age, job){ this.name = name; this.age = age; this.job = job; ...
- mysql安装与使用
一.Mysql官方下载地址:https://www.mysql.com/downloads/ 二.下载 Community Server,这个版本是完全免费的 https://dev.mysql.c ...
- 微软的深度学习框架cntk ,我目前见过 安装方式最简单的一个框架,2.0之后开始支持C# 咯
wiki:https://github.com/Microsoft/CNTK/wiki 嗨,你也是我这种手残党么?之前试着安装着mxnet和tensorflow,但是因为时间比较短所以往往来不及安装完 ...
- 初识Socket通信:基于TCP和UDP协议学习网络编程
学习笔记: 1.基于TCP协议的Socket网络编程: (1)Socket类构造方法:在客户端和服务器端建立连接 Socket s = new Socket(hostName,port);以主机名和端 ...
- 【Linux】安装配置JDK1.8
第一步:下载Linux环境下的jdk1.8,请去(官网)中下载jdk的安装文件: https://www.oracle.com/technetwork/java/javase/downloads/in ...
- 数组和矩阵(2)——Reshape the Matrix
In MATLAB, there is a very useful function called 'reshape', which can reshape a matrix into a new o ...