前面所讲的二叉搜索树有个比较严重致命的问题就是极端情况下当数据以排序好的顺序创建搜索树此时二叉搜索树将退化为链表结构因此性能也大幅度下降,因此为了解决此问题我们下面要介绍的与二叉搜索树非常类似的结构就诞生了;

  AVL(Adelson-Velskii and Landis)树,名字取自其发明者 G.M. Adelson-Velsky 和 E.M. Landis的首字母,AVL树是一棵特殊的二叉搜索树它与普通二叉搜索树最主要的区别就是其能够使二叉搜索树维持其左右节点的平衡;

  AVL树:其任意一个节点左子树与右子树高度差不超过1,由于此特征因此需要在AVL增删节点时维护其左右节点使该树满足该特性(左右节点平衡);

  此AVL树中节点2节点高度都为2,节点1与3节点高度都为1;节点高度为左右子树中最大的节点高度+1;

AVL树实现关键

  1、标注其节点高度

  2、计算节点平衡因子

  3、维护其节点满足左右节点高度不超过1

AVL树的实现

  1、AVL树定义

  根据AVL树的特性先定义该数据类型的结构;

 type AVL struct {
root *AVLNode
size int
compare Comparable
}
type AVLNode struct {
e interface{}
left *AVLNode
right *AVLNode
height int
}

  AVL:为定义的AVL树自定义对象

  AVLNode:为树中每个节点的节点自定义对象

  compare:为定义的用于树中节点元素进行数据对比的对象

  size:AVL树的元素个数

  root:树的根节点

  e:节点元素值

  left:左子树

  right:右子树

  height:节点高度

  AVL树与二叉搜索树一样所有很多操作都可用递归来实现,比如元素的添加、删除、查找等;

  可以说AVL树为二叉搜索树的升级版本所以并不会像出现二叉搜索树一样出现退化为O(n)时间复杂度的情况,与二叉搜索树一样通过中序遍历可得到排序好的数据,二叉搜索树的搜索、插入、删除时间复杂度为O(log(n)),n为树的深度,这里只是简单的介绍了AVL树,后面会有AVL树实现的相关介绍;

文章首发地址:Solinx

http://www.solinx.co/archives/1323

再回首数据结构—AVL树(一)的更多相关文章

  1. 再回首数据结构—AVL树(二)

    前面主要介绍了AVL的基本概念与结构,下面开始详细介绍AVL的实现细节: AVL树实现的关键点 AVL树与二叉搜索树结构类似,但又有些细微的区别,从上面AVL树的介绍我们知道它需要维护其左右节点平衡, ...

  2. 数据结构-AVL树的旋转

    http://blog.csdn.net/GabrieL1026/article/details/6311339 平衡二叉树在进行插入操作的时候可能出现不平衡的情况,AVL树即是一种自平衡的二叉树,它 ...

  3. JAVA数据结构--AVL树的实现

    AVL树的定义 在计算机科学中,AVL树是最先发明的自平衡二叉查找树.在AVL树中任何节点的两个子树的高度最大差别为1,所以它也被称为高度平衡树.查找.插入和删除在平均和最坏情况下的时间复杂度都是.增 ...

  4. 简单数据结构———AVL树

    C - 万恶的二叉树 Crawling in process... Crawling failed Time Limit:1000MS     Memory Limit:32768KB     64b ...

  5. 数据结构--Avl树的创建,插入的递归版本和非递归版本,删除等操作

    AVL树本质上还是一棵二叉搜索树,它的特点是: 1.本身首先是一棵二叉搜索树.   2.带有平衡条件:每个结点的左右子树的高度之差的绝对值最多为1(空树的高度为-1).   也就是说,AVL树,本质上 ...

  6. 第三十二篇 玩转数据结构——AVL树(AVL Tree)

          1.. 平衡二叉树 平衡二叉树要求,对于任意一个节点,左子树和右子树的高度差不能超过1. 平衡二叉树的高度和节点数量之间的关系也是O(logn) 为二叉树标注节点高度并计算平衡因子 AVL ...

  7. Java数据结构——AVL树

    AVL树(平衡二叉树)定义 AVL树本质上是一颗二叉查找树,但是它又具有以下特点:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树,并且拥有自平衡机制.在AV ...

  8. 数据结构 - AVL 树

    简介 基本概念 AVL 树是最早被发明的自平衡的二叉查找树,在 AVL 树中,任意结点的两个子树的高度最大差别为 1,所以它也被称为高度平衡树,其本质仍然是一颗二叉查找树. 结合二叉查找树,AVL 树 ...

  9. 数据结构-AVL树

    实现: #ifndef AVL_TREE_H #define AVL_TREE_H #include "dsexceptions.h" #include <iostream& ...

随机推荐

  1. 20条IPTables防火墙规则用法! [转]

    20条IPTables防火墙规则用法! 导读 管理网络流量是系统管理员必需处理的最棘手工作之一,我们必需规定连接系统的用户满足防火墙的传入和传出要求,以最大限度保证系统免受攻击.很多用户把 Linux ...

  2. Android中的CardView使用

    Android 5.0 版本中新增了CardView,CardView继承自FrameLayout类,并且可以设置圆角和阴影,使得控件具有立体性,也可以包含其他的布局容器和控件. 1.配置build. ...

  3. 【3dsMax安装失败,如何卸载、安装3dMax 2016?】

    AUTODESK系列软件着实令人头疼,安装失败之后不能完全卸载!!!(比如maya,cad,3dsmax等).有时手动删除注册表重装之后还是会出现各种问题,每个版本的C++Runtime和.NET f ...

  4. mapper mysl实现批量插入 更新

    1.批量插入 <insert id="insertConfirm" parameterType="java.util.List"> insert i ...

  5. 成功配置TOMCAT的LOG4J日志系统,格式:HTML+每天以YYYY-MM-DD.LOG命名的日志文件

    关于log4j.properties文件在web项目中放的位置,找过很多,最后实践结果是: 一.web项目 二.放在src的目录里面,然后项目生成后会自动在\WEB-INF\classes文件里有份l ...

  6. 在使用反射时,maven设置依赖范围引起的异常

    背景是,运用annotation进行权限控制,将一个包下面的类.进行反射,然后判断类的annotation,根据annotation设置权限 问题来了,包下面有5个类,在反射时报了 javqx.ser ...

  7. node使用https,webSocket开启wss

    1. 前言 看WEBRTC教程时使用到WebSocket来传输信令,node端使用了ws库来实现,但在浏览器端http无法获取本地媒体,必须使用https,使用https后webSocket 不能使用 ...

  8. 深入理解JavaScript系列(2):揭秘命名函数表达式

    前言 网上还没用发现有人对命名函数表达式进去重复深入的讨论,正因为如此,网上出现了各种各样的误解,本文将从原理和实践两个方面来探讨JavaScript关于命名函数表达式的优缺点. 简单的说,命名函数表 ...

  9. ASP .NET SVN && emmet 插件

    学习  ASP .NET 时间的第三周: 来讲讲如何在 visual studio 2013...上搭载 SVN吧: 废话不多说: One Step: 电脑上已安装 visual studio 201 ...

  10. js之方法

    原文 在一个对象中绑定函数,称为这个对象的方法. 在JavaScript中,对象的定义是这样的: var xiaoming = { name: '小明', birth: 1990 }; 但是,如果我们 ...