原地址

讨论区

Changing

算法一

我会随机!

由于我忘了设置多组数据,期望得分0至100。

算法二

我会模拟!

复杂度\(O(t^2)\),期望得分60。

但是很多人忘记题目给出的是环形……

算法三

我会正解!

实际上是数学题,显然时刻tt第kk盏灯的状态为

\[\left(\sum_{i=0}^t C_t^ia_{(k+i-1) \bmod n+1}\right) \bmod 2
\]

求和即可。复杂度O(t),期望得分100。

Calculating

算法一

我会推公式!

将ff分解质因数得到

$$f=p_1{k_1}p_2{k_2}..p_j^{a_j}$$

,则题目实际上要求:

\[ans=\sum_{f=l}^r\prod_{i=1}^j p_i^{a_i+1}
\]

记f因数个数为d(f),则由排列组合可得:

\[\prod_{i=1}^j p_i^{a_i+1}=d(f)
\]

则原式化为:

\[ans=\sum_{f=l}^rd(f)
\]

暴力统计答案。时间复杂度\(O(r^2)\),期望得分40。

算法二

我会拆询问!

实际上,我们有:

\[ans=\sum_{i=1}^rd(i)-\sum_{j=1}^{l-1}d(j)
\]

考虑如何求\(\sum_{i=1}^rd(i)\),

对于[1,r]的整数k,k作为因数在[1,r]中出现了\(\left\lfloor \frac rk \right\rfloor\)次,

显然对答案的贡献为\(\left\lfloor \frac rk \right\rfloor\)。

则:

\[ans=\sum_{i=1}^r\left\lfloor \frac ri \right\rfloor-\sum_{j=1}^{l-1}\left\lfloor \frac {l-1}j \right\rfloor
\]

枚举k,统计答案。时间复杂度\(O(2r)\),期望得分60到70之间。

算法三

我会分块!

注意到\(\left\lfloor \frac rk \right\rfloor\)最多有$$2\sqrt r$$种取值,我们对其分类统计答案即可。

做法类似没有莫比乌斯函数的莫比乌斯反演。

时间复杂度\(O(4\sqrt r)\),可通过全部测试点。

PS:至于为什么会有100100个测试点……这是个好问题。

Coloring

算法一

我会随机!

没试过,期望得分40以下。

算法二

我会骗分!

按从左往右,从上往下的顺序依次填颜色,期望得分60。

算法三

我会贪心!

手玩几个例子不难发现把相同颜色的放在一起更优。每次填颜色,贪心找一块在边界且尽可能大的位置,放下该颜色的所有格子。期望得分70至90。

算法四

我会搜索!

搜索时间复杂度\(O(c^{nm})\),超时无疑。

嘿嘿嘿。

算法五

我会物理!

哦豁?搜索其实很靠近正解,但是时间太慢。我们考虑模拟退火。

每次操作交换两个在联通块边界的格子,计算答案是否更优,按概率更新。

算法六

等等……为啥会是90?

因为你可能会陷入局部最优解。

多随机几次就好了。

时间复杂度\(O(O(跑得过))\),期望得分100。

T1

#include <cstdio>
using namespace std;
const int maxn=3000005;
int n,q,z,i,t,g[maxn];
int a[maxn],ans;
int main()
{
scanf("%d%d%d",&n,&q,&z);
z--;
for (i=0;i<n;i++)
scanf("%d",&a[i]);
for (i=1;i<=q>>1;i++)
g[i<<1]=g[i]+1;
t=0;
for (i=0;i<=q;i++)
{
t=t+g[q-i+1]-g[i];
ans+=(t==0)*a[(i+z)%n];
}
printf("%d\n",ans&1);
return 0;
}

T2


#include <cstdio>
#define mod 998244353
using namespace std;
long long l,r;
long long calc(long long n)
{
long long ans=0;
for (long long i=1;i<=n;i=n/(n/i)+1)
ans=(ans+(n/(n/i)-i+1)%mod*(n/i)%mod)%mod;
return ans;
}
int main()
{
scanf("%lld%lld",&l,&r);
printf("%lld\n",(calc(r)-calc(l-1)+mod)%mod);
return 0;
}

T3

#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <ctime>
using namespace std;
int q,x,y,i,j,k,m[25][25],mm[25][25];
int mx,my,tx,ty;
double t,tmin,tmp,ans,delta,now;
int tot[51],cl,top[51];
bool move;
int lans,lm[25][25];
inline double search()
{
t=x*y;
delta=0.99998;
tmin=0.0001;
ans=0;
for (j=1;j<=x;j++)
for (k=1;k<y;k++)
ans+=m[j][k]!=m[j][k+1];
for (j=1;j<x;j++)
for (k=1;k<=y;k++)
ans+=m[j][k]!=m[j+1][k];
for (j=1;j<=x;j++)
for (k=1;k<=y;k++)
mm[j][k]=m[j][k];
for (i=1;i<=x;i++)
{
mm[i][0]=mm[i][1];
mm[i][y+1]=mm[i][y];
}
for (i=1;i<=y;i++)
{
mm[0][i]=mm[1][i];
mm[x+1][i]=mm[x][i];
}
tmp=now=ans;
while (tmin<t)
{
while (1)
{
mx=rand()%x+1;
my=rand()%y+1;
tx=rand()%x+1;
ty=rand()%y+1;
if (mm[mx][my]==mm[tx][ty])
continue;
if (mm[mx-1][my]==mm[mx+1][my]&&
mm[mx+1][my]==mm[mx][my-1]&&
mm[mx][my-1]==mm[mx][my+1]&&
mm[mx][my+1]==mm[mx][my])
continue;
if (mm[tx-1][ty]==mm[tx+1][ty]&&
mm[tx+1][ty]==mm[tx][ty-1]&&
mm[tx][ty-1]==mm[tx][ty+1]&&
mm[tx][ty+1]==mm[tx][ty])
continue;
move=0;
tmp-=(mm[mx-1][my]!=mm[mx][my])+(mm[mx+1][my]!=mm[mx][my])+(mm[mx][my+1]!=mm[mx][my])+(mm[mx][my-1]!=mm[mx][my]);
tmp-=(mm[tx-1][ty]!=mm[tx][ty])+(mm[tx+1][ty]!=mm[tx][ty])+(mm[tx][ty+1]!=mm[tx][ty])+(mm[tx][ty-1]!=mm[tx][ty]);
swap(mm[mx][my],mm[tx][ty]);
for (i=1;i<=x;i++)
{
mm[i][0]=mm[i][1];
mm[i][y+1]=mm[i][y];
}
for (i=1;i<=y;i++)
{
mm[0][i]=mm[1][i];
mm[x+1][i]=mm[x][i];
}
tmp+=(mm[mx-1][my]!=mm[mx][my])+(mm[mx+1][my]!=mm[mx][my])+(mm[mx][my+1]!=mm[mx][my])+(mm[mx][my-1]!=mm[mx][my]);
tmp+=(mm[tx-1][ty]!=mm[tx][ty])+(mm[tx+1][ty]!=mm[tx][ty])+(mm[tx][ty+1]!=mm[tx][ty])+(mm[tx][ty-1]!=mm[tx][ty]);
if (tmp<ans)
{
ans=tmp;
for (j=1;j<=x;j++)
for (k=1;k<=y;k++)
m[j][k]=mm[j][k];
move=1;
}
if (tmp<=now)
{
now=tmp;
move=1;
}
else
if (rand()/(double)RAND_MAX<exp((ans-tmp)/t))
{
now=tmp;
move=1;
}
if (!move)
{
tmp-=(mm[mx-1][my]!=mm[mx][my])+(mm[mx+1][my]!=mm[mx][my])+(mm[mx][my+1]!=mm[mx][my])+(mm[mx][my-1]!=mm[mx][my]);
tmp-=(mm[tx-1][ty]!=mm[tx][ty])+(mm[tx+1][ty]!=mm[tx][ty])+(mm[tx][ty+1]!=mm[tx][ty])+(mm[tx][ty-1]!=mm[tx][ty]);
swap(mm[mx][my],mm[tx][ty]);
for (i=1;i<=x;i++)
{
mm[i][0]=mm[i][1];
mm[i][y+1]=mm[i][y];
}
for (i=1;i<=y;i++)
{
mm[0][i]=mm[1][i];
mm[x+1][i]=mm[x][i];
}
tmp+=(mm[mx-1][my]!=mm[mx][my])+(mm[mx+1][my]!=mm[mx][my])+(mm[mx][my+1]!=mm[mx][my])+(mm[mx][my-1]!=mm[mx][my]);
tmp+=(mm[tx-1][ty]!=mm[tx][ty])+(mm[tx+1][ty]!=mm[tx][ty])+(mm[tx][ty+1]!=mm[tx][ty])+(mm[tx][ty-1]!=mm[tx][ty]);
for (i=1;i<=x;i++)
{
mm[i][0]=mm[i][1];
mm[i][y+1]=mm[i][y];
}
for (i=1;i<=y;i++)
{
mm[0][i]=mm[1][i];
mm[x+1][i]=mm[x][i];
}
}
break;
}
t*=delta;
}
return ans;
}
int main()
{
scanf("%d%d%d",&x,&y,&cl);
for (i=1;i<=cl;i++)
scanf("%d",&tot[i]);
lans=0x7FFFFFFF;
for (q=1;q<=3;q++)
{
memset(top,0,sizeof(top));
srand(time(0));
for (i=1;i<=x;i++)
for (j=1;j<=y;j++)
{
m[i][j]=rand()%cl+1;
while (top[m[i][j]]==tot[m[i][j]])
m[i][j]=rand()%cl+1;
top[m[i][j]]++;
}
search();
if (ans<lans)
{
for (i=1;i<=x;i++)
for (j=1;j<=y;j++)
lm[i][j]=m[i][j];
lans=ans;
}
}
for (i=1;i<=x;i++)
{
for (j=1;j<=y;j++)
printf("%d ",lm[i][j]);
printf("\n");
}
return 0;
}

snakes的更多相关文章

  1. [POJ 2588] Snakes

    同swustoj 8 Snakes Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 1015   Accepted: 341 ...

  2. [POJ 2588]--Snakes(并查集)

    题目链接:http://poj.org/problem?id=2588 Snakes Time Limit: 1000MS   Memory Limit: 65536K   Description B ...

  3. [lightoj P1151] Snakes and Ladders

    1151 - Snakes and Ladders Time Limit: 2 second(s)    Memory Limit: 32 MB 'Snakes and Ladders' or 'Sh ...

  4. python Snakes 库安装

    SNAKES : A A Flexible High-Level Petri Nets Library SNAKES是python一个可以用于Petri网的库 python2安装SNAKES库:  在 ...

  5. Snakes and Ladders LightOJ - 1151( 概率dp+高斯消元)

    Snakes and Ladders LightOJ - 1151 题意: 有100个格子,从1开始走,每次抛骰子走1~6,若抛出的点数导致走出了100以外,则重新抛一次.有n个格子会单向传送到其他格 ...

  6. LightOJ - 1151 Snakes and Ladders —— 期望、高斯消元法

    题目链接:https://vjudge.net/problem/LightOJ-1151 1151 - Snakes and Ladders    PDF (English) Statistics F ...

  7. E - Polycarp and Snakes

    E - Polycarp and Snakes 题意:在一个全是点的图上开始画线,每次将一行或一列任意长度染成字母,一笔染一种字母,字母必须从a开始连续到后面某个字母可以覆盖. 问所给图案是否满足 , ...

  8. 洛谷 P5424 [USACO19OPEN]Snakes

    题目链接 题目描述 传说,数千年前圣帕特里克消灭了哞尔兰所有的蛇.然而,蛇们现在卷土重来了!圣帕特里克节是在每年的3月17日,所以Bessie要用彻底清除哞尔兰所有的蛇来纪念圣帕特里克. Bessie ...

  9. UVAlive-2554 Snakes & Ladders---BFS状态的存储

     题目链接: https://vjudge.net/problem/UVALive-2554 题目大意: 题目的大概意思是又N*N的棋盘,编号从1 到 N*N 棋盘中分布着蛇和梯子玩家在位置1处,   ...

  10. Snakes 的 Naïve Graph

    题解: 首先分析一下这个问题 发现等价于是求n之内与n互素的数的个数,即欧拉函数 这个可以线性筛 但发现还应该减去$x^2==1$的情况 这个东西不是那么好处理 考虑用中国剩余定理拆 因为$p1^{a ...

随机推荐

  1. Windows下LATEX排版论文攻略—CTeX、JabRef使用心得

    笔者刚刚接触到TEX排版,相关知识完全空白,用了两天时间学习并完成了一篇论文的完整排版. 期间遇到不少小问题,着实辛苦,分享至上,现将其解决办法总结归纳,共同学习. 一.工具介绍 TeX是一个很好排版 ...

  2. c# mysql blob数据类型

    1.采用stream流形式写入: #region 数据流转换成blob类型数据写入数据库 static public bool StreamToBlob(ref Stream stream, Odbc ...

  3. coredump分析

    首先通过命令 gdb freeswitch core.60954进入gdb. 这里freeswitch 是产生coredump的可执行应用,core.60954是应用产生的coredump文件. 然后 ...

  4. argparse 使用指南

    argparse是Python标准库中推荐使用的命令行解析模块, 其前身是optparse库,从Python 2.7开始,optparse库被弃用, 替代它的就是argparse库,除此之外,标准库中 ...

  5. JavaScript 执行环境(作用域)总结

    所有变量(包括基本类型和引用类型)都存在一个执行环境(也称为作用域)当中,这个执行环境决定了变量的生命周期,以及哪一部分可以访问其中的变量. 以下是关于执行环境的几点总结: 执行环境有全局执行环境(全 ...

  6. BZOJ4361 isn(动态规划+树状数组+容斥原理)

    首先dp出长度为i的不下降子序列个数,显然这可以树状数组做到O(n2logn). 考虑最后剩下的序列是什么,如果不管是否合法只是将序列删至只剩i个数,那么方案数显然是f[i]*(n-i)!.如果不合法 ...

  7. [LINUX]警告:检测到时钟错误。您的创建可能是不完整的。

    [LINUX]警告:检测到时钟错误.您的创建可能是不完整的.   原因:     如果上一次编译时为20071001,你把系统时间改成20070901后再编译就会报这样的错误. 解决:     把时间 ...

  8. POJ 3415 后缀数组+单调栈

    题目大意: 给定A,B两种字符串,问他们当中的长度大于k的公共子串的个数有多少个 这道题目本身理解不难,将两个字符串合并后求出它的后缀数组 然后利用后缀数组求解答案 这里一开始看题解说要用栈的思想,觉 ...

  9. [Leetcode] Symmetric tree 对称二叉树

    Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center). For e ...

  10. HDU 1394 Minimum Inversion Number(树状数组/归并排序实现

    Minimum Inversion Number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java ...