Codeforces #447 Div2 E
#447 Div2 E
题意
给出一个由有向边构成的图,每条边上有蘑菇,假设有 \(n\) 个蘑菇,那么第一次走过这条边可以获得 \(n\) 个蘑菇,第二次 \(n-1\),第三次 \(n-1-2\),第四次 \(n-1-2-3\),后面类推,直至为 \(0\)。问从选定点出发最多可以获得几个蘑菇。
分析
Tarjan 算法缩点,重新给点标号(缩点),且保证了拓扑排序中靠后的点先标号,对于缩完点后的有向无环图,DP去求最长路。(对于拓扑排序后的序列,根据拓扑排序的性质,可以从后往前DP)
拓扑排序保证了:对于有向边 \(a-b\),\(a\) 一定在 \(b\) 前面。
code
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 2e6 + 10;
struct Edge {
int v, w, nxt;
}e[N];
int head[N], cnt;
void addEdge(int u, int v, int w) {
e[cnt].v = v;
e[cnt].w = w;
e[cnt].nxt = head[u];
head[u] = cnt++;
}
int n, m, c, nn, vis[N], dfn[N], low[N];
int f[N]; // 被缩成的新点的序号
ll sup[N]; // 这个新点能提供的贡献
stack<int> sta;
vector<int> G[N];
void tarjan(int u) { // 找强连通分量
sta.push(u);
dfn[u] = low[u] = ++c;
vis[u] = 1;
for(int i = head[u]; ~i; i = e[i].nxt) {
int v = e[i].v;
if(!dfn[v]) {
tarjan(v);
low[u] = min(low[u], low[v]);
} else if(vis[v] && low[u] > dfn[v]) {
low[u] = dfn[v];
}
}
if(low[u] == dfn[u]) {
++nn;
while(1) {
int id = sta.top();
G[nn].push_back(id);
f[id] = nn;
sta.pop();
vis[id] = 0;
if(id == u) break;
}
}
}
ll calc(int w) {
int d = sqrt(2 * w);
while(d * d + d > 2 * w) d--;
return 1LL * w * (d + 1) - (1LL * d * (d + 1) * (2 * d + 1) / 6 + d * (d + 1) / 2) / 2;
}
ll dp[N];
int main() {
memset(head, -1, sizeof head);
scanf("%d%d", &n, &m);
for(int i = 0; i < m; i++) {
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
addEdge(u, v, w);
}
nn = n;
for(int i = 1; i <= n; i++) {
if(!dfn[i]) tarjan(i);
}
// 计算每个强连通分量缩成的点能提供的贡献
for(int i = 1; i <= n; i++) {
for(int j = head[i]; ~j; j = e[j].nxt) {
int v = e[j].v;
if(f[i] == f[v]) sup[f[i]] += calc(e[j].w);
}
}
int s;
scanf("%d", &s);
s = f[s];
for(int i = n + 1; i <= nn; i++) {
for(int j = 0; j < G[i].size(); j++) {
int q = G[i][j];
for(int p = head[q]; ~p; p = e[p].nxt) {
int v = e[p].v;
if(f[q] != f[v])
dp[i] = max(dp[i], dp[f[v]] + sup[f[v]] + e[p].w);
}
}
}
cout << sup[s] + dp[s] << endl;
return 0;
}
Codeforces #447 Div2 E的更多相关文章
- Codeforces #447 Div2 D
#447 Div2 D 题意 给一棵完全二叉树,每条边有权值为两点间的距离,每次询问 \(x, h\) ,从结点 \(x\) 出发到某一结点的最短路的距离 \(d\) 如果小于 \(h\) ,则答案加 ...
- Codeforces #180 div2 C Parity Game
// Codeforces #180 div2 C Parity Game // // 这个问题的意思被摄物体没有解释 // // 这个主题是如此的狠一点(对我来说,),不多说了这 // // 解决问 ...
- Codeforces #541 (Div2) - E. String Multiplication(动态规划)
Problem Codeforces #541 (Div2) - E. String Multiplication Time Limit: 2000 mSec Problem Descriptio ...
- Codeforces #541 (Div2) - F. Asya And Kittens(并查集+链表)
Problem Codeforces #541 (Div2) - F. Asya And Kittens Time Limit: 2000 mSec Problem Description Inp ...
- Codeforces #541 (Div2) - D. Gourmet choice(拓扑排序+并查集)
Problem Codeforces #541 (Div2) - D. Gourmet choice Time Limit: 2000 mSec Problem Description Input ...
- Codeforces #548 (Div2) - D.Steps to One(概率dp+数论)
Problem Codeforces #548 (Div2) - D.Steps to One Time Limit: 2000 mSec Problem Description Input Th ...
- 【Codeforces #312 div2 A】Lala Land and Apple Trees
# [Codeforces #312 div2 A]Lala Land and Apple Trees 首先,此题的大意是在一条坐标轴上,有\(n\)个点,每个点的权值为\(a_{i}\),第一次从原 ...
- codeforces 447 A-E div2 补题
A DZY Loves Hash 水题 #include<iostream> #include<cstdio> #include<cstdlib> #include ...
- Codeforces #263 div2 解题报告
比赛链接:http://codeforces.com/contest/462 这次比赛的时候,刚刚注冊的时候非常想好好的做一下,可是网上喝了个小酒之后.也就迷迷糊糊地看了题目,做了几题.一觉醒来发现r ...
随机推荐
- hihocoder 1457(后缀自动机+拓扑排序)
题意 给定若干组由数字构成的字符串,求所有不重复子串的和(把他们看成十进制),答案mod(1e9+7) 题解: 类似后缀数组的做法,把字符串之间用':'连接,这里用':'是因为':'的ascii码恰好 ...
- 详解npm的模块安装机制
详解npm的模块安装机制 依赖树表面的逻辑结构与依赖树真实的物理结构 依赖树表面的逻辑结构与依赖树真实的物理结构并不一定相同! 这里要先提到两个命令:tree -d(linux)和npm ls(npm ...
- CF763C Timofey and Remoduling
题目戳这里. 这道题目纯粹是考思维. 若\(2N \le M\),由于答案肯定是\(s,s+d,\dots,s+(N-1)d\),我们任意枚举两个数\(a,b\),不妨设\(b\)在数列中出现在\(a ...
- 纯css实现 switch开关
<!-- 直接看代码,利用了css3兄弟选择器 --><!-- html --> <button class="switch"> <inp ...
- 处理WebService asmx的经验
项目的需求,需要和一个.net系统进行数据交换,合作方提供了一个WebService接口.这个与一般的PHP POST或GET传值再查库拿数据的思路有点不一样,需要用到SOAP模块,处理方法也很简单, ...
- php设定错误和异常处理可使用的函数
1.register_shutdown_function 使用场景:当我们的脚本执行完成或意外死掉导致PHP执行即将关闭时,这个函数会被调用. 函数介绍: void register_shutdown ...
- js实现快速排序的方法
因为面试面到了这个问题,所以写一下,加深印象,有两种方法 第一种是通过两个for循环,每一次对比相邻两个数据的大小,小的排在前面,如果前面的数据比后面的大就交换这两个数的位置,这个方法就是比较次数太多 ...
- Django项目知识点汇总
目录 一.wsgi接口 二.中间件 三.URL路由系统 四.Template模板 五.Views视图 六.Model&ORM 七.Admin相关 八.Http协议 九.COOKIE 与 SES ...
- AQS同步组件及ReentrantLock和synchronized的区别
AQS同步组件 CountDownLatch(只有一个线程对他进行操作): 主线程必须在启动其它线程后立即调用await()方法.这样主线程的操作就会在这个方法上阻塞,直到其它线程完成各自的任务. S ...
- swift对比object-c
http://www.cocoachina.com/bbs/read.php?tid=204294 WWDC 2014上苹果再次惊世骇俗的推出了新的编程语言SWIFT( 雨燕 ), 这个消息会前没有半 ...