hdu 5239 Doom(线段树)
Doom
Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Others)
Total Submission(s): 1401 Accepted Submission(s): 368
Mike has got stuck on a mystery machine. If he cannot solve this problem, he will go to his doom.
This machine is consist of n cells, and a screen. The i-th cell contains a number ai(1≤i≤n). The screen also contains a number s, which is initially 0.
There is a button on each cell. When the i-th is pushed, Mike observes that, the number on the screen will be changed to s+ai, where s is the original number. and the number on the i-th cell will be changed to a2i.
Mike observes that the number is stored in radix p, where p=9223372034707292160. In other words , the operation is under modulo p.
And now, Mike has got a list of operations. One operation is to push buttons between from l-th to r-th (both included), and record the number on the screen. He is tired of this stupid work, so he asks for your help. Can you tell him, what are the numbers recorded.
For each test case, the first line contains two integers n,m(1≤n,m≤105).
The next line contains n integers ai(0≤ai<p), which means the initial values of the n cells.
The next m lines describe operations. In each line, there are two integers l,r(1≤l≤r≤n), representing the operation.
For more details you can take a look at the example.
4 4
2 3 4 5
1 2
2 3
3 4
1 4
1 3
2
1 1
1 1
1 1
5
18
39
405
Case #2:
2
6
22
#include <bits/stdc++.h>
using namespace std; #define L(root) ((root) << 1)
#define R(root) (((root) << 1) | 1) #define LL long long
#define ULL unsigned long long
//const long long mod=((1ll<<63)-(1ll<<31));//这是个什么数 const ULL MOD = 9223372034707292160ULL; //乘法转加法
ULL squareMod(ULL a)
{
ULL b = a;
ULL sum = ;
while (b) {
if (b & ) {
sum = (sum + a) % MOD;
}
a = (a + a) % MOD;
b >>= ;
}
return sum;
} const int MAXN = 1e5 + ;
ULL numbers[MAXN]; struct Node {
int left, right;
ULL sum;
bool same;//
//int cnt;//
int mid()
{
return left + ((right - left) >> );
}
} tree[MAXN * ]; void pushUp(int root)
{
tree[root].sum = (tree[L(root)].sum + tree[R(root)].sum) % MOD;
tree[root].same = tree[L(root)].same && tree[R(root)].same;
//tree[root].cnt = min(tree[L(root)].cnt, tree[R(root)].cnt);
} void build(int root, int left, int right)
{
tree[root].left = left;
tree[root].right = right;
if (left == right) {
tree[root].sum = numbers[left];
tree[root].same = false;
//tree[root].cnt = 0;
return;
}
int mid = tree[root].mid();
build(L(root), left, mid);
build(R(root), mid + , right);
pushUp(root);
} ULL query(int root, int left, int right)
{
if (tree[root].left == left && tree[root].right == right) {
return tree[root].sum;
}
int mid = tree[root].mid();
if (right <= mid) {
return query(L(root), left, right);
} else if (mid < left) {
return query(R(root), left, right);
} else {
return (query(L(root), left, mid) + query(R(root), mid + , right)) % MOD;
}
} void update(int root, int left, int right, int add)
{
//重点,如区间内所有数字乘方取模已经不变,则无需更新
if (tree[root].same) {
//也可以用乘方次数,问题是怎么知道这个数字捏?
//if (tree[root].cnt > 30) {
return;
}
if (tree[root].left == tree[root].right) {
//直接乘会超限
//ULL tmp = tree[root].sum * tree[root].sum % MOD;
ULL tmp = squareMod(tree[root].sum);
if (tmp == tree[root].sum) {
tree[root].same = true;
return;
}
//++tree[root].cnt;
tree[root].sum = tmp;
return;
}
int mid = tree[root].mid();
if (right <= mid) {
update(L(root), left, right, add);
} else if (left > mid) {
update(R(root), left, right, add);
} else {
update(L(root), left, mid, add);
update(R(root), mid + , right, add);
}
pushUp(root);
} int main()
{
// printf("%lld\n", mod);
// printf("%lld\n", MOD);
// test();
int t;
int n, m;
int l, r;
int i;
ULL s;
int cas = ;
scanf("%d", &t);
while (t--) {
scanf("%d%d", &n, &m);
for (i = ; i <= n; ++i) {
scanf("%llu", &numbers[i]);
}
build(, , n);
printf("Case #%d:\n", ++cas);
s = ;
for (i = ; i < m; ++i) {
scanf("%d%d", &l, &r);
//printf("%d\n", query(1, l, r));
s = (s + query(, l, r)) % MOD;
printf("%llu\n", s);
update(, l, r, );
}
}
return ;
}
hdu 5239 Doom(线段树)的更多相关文章
- HDU 5239 Doom 线段树
题意: 有\(n(1 \leq n \leq 10^5)\)个数,和\(m(1 \leq m \leq 10^5)\)操作,和一个计算\(s\),一切运算都在模\(MOD\)进行的. 操作\(l, \ ...
- hdu 4031 attack 线段树区间更新
Attack Time Limit: 5000/3000 MS (Java/Others) Memory Limit: 65768/65768 K (Java/Others)Total Subm ...
- hdu 4288 离线线段树+间隔求和
Coder Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Su ...
- hdu 3016 dp+线段树
Man Down Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total S ...
- HDU 5877 dfs+ 线段树(或+树状树组)
1.HDU 5877 Weak Pair 2.总结:有多种做法,这里写了dfs+线段树(或+树状树组),还可用主席树或平衡树,但还不会这两个 3.思路:利用dfs遍历子节点,同时对于每个子节点au, ...
- HDU 3308 LCIS (线段树区间合并)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3308 题目很好懂,就是单点更新,然后求区间的最长上升子序列. 线段树区间合并问题,注意合并的条件是a[ ...
- HDU 2795 Billboard (线段树)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2795 题目大意:有一块h*w的矩形广告板,要往上面贴广告; 然后给n个1*wi的广告,要求把广告贴 ...
- hdu 5480 Conturbatio 线段树 单点更新,区间查询最小值
Conturbatio Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=54 ...
- hdu 1828 Picture(线段树 || 普通hash标记)
http://acm.hdu.edu.cn/showproblem.php?pid=1828 Picture Time Limit: 6000/2000 MS (Java/Others) Mem ...
随机推荐
- PHP查看目录下的所有文件
[1].[代码] [PHP]代码 跳至 [1] ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 ...
- PHP判断是手机端访问还是PC端访问网站
Mobile_Detect 是一个轻量级的开源移动设备(手机)检测的 PHP Class, 它使用 User-Agent 中的字符串,并结合 HTTP Header,来检测移动设备环境. 这个设备检测 ...
- pycharm中导入自写模块时,模块下出现红线
问题描述: 在pycharm中导入自己写的模块时,得不到智能提示,并在模块名下出现下红线,但是代码可以执行,错误提示为下图所示: 原因:出现 以上情况,是因为文件目录设置的问题,pycharm中的最上 ...
- Js算两经纬度间球面距离
function GetDistance( lat1, lng1, lat2, lng2){ var radLat1 = lat1 * Math.PI / 180.0 var radLat2 = la ...
- java ReentrantLock可重入锁的使用场景
摘要 从使用场景的角度出发来介绍对ReentrantLock的使用,相对来说容易理解一些. 场景1:如果发现该操作已经在执行中则不再执行(有状态执行) a.用在定时任务时,如果任务执行时间可能超过下次 ...
- Ip-san 配置过程
1:SAN的定义 SAN是storage area network(存储区域网络)的简写,早期的san采用的是光纤通道技术,后期当iscsi协议出现以后,为了区分两者,就划分了IP SAN和FC SA ...
- python更新模块
pip install -U 模块名 # 这是 python2+ 版本的用法更新模块 pip3 install -U 模块名 # 这是 python3+ 版本的用法更新模块
- JavaScript:学习笔记(1)——在HTML中使用JS
在HTML中使用JavaScript <script>元素 1.直接在网页中嵌入JS代码 说明: 请不要在代码的任何地方出现</script>字符串 这是由于解析嵌入式代码的规 ...
- 019_Map Task数目的确定和Reduce Task数目的指定
注意标题:Map Task数目的确定和Reduce Task数目的指定————自然得到结论,前者是后者决定的,后者是人为指定的.查看源码可以很容易看懂 1.MapReduce作业中Map Task数目 ...
- arcgis for flex map遮罩
效果1:map的遮罩(对整个map进行遮罩) 效果2:对某个图层进行遮罩