分块,离散化,预处理出:

①前i块中x出现的次数(差分);

②第i块到第j块中的众数是谁,出现了多少次。

询问的时候,对于整块的部分直接获得答案;对于零散的部分,暴力统计每个数出现的次数,加上差分的结果,尝试更新ans。

 #include<cstdio>
#include<cmath>
#include<algorithm>
#include<cstring>
using namespace std;
int n,m,sum,sz,num[],l[],r[],plv[][],mode[][],mplv[][];
int a[],en,Time[],x,y,ma[],ans;
struct Point{int v,p;}b[];
bool operator < (const Point &a,const Point &b){return a.v<b.v;}
int Res,Num;char C,CH[];
inline int G()
{
Res=;C='*';
while(C<''||C>'')C=getchar();
while(C>=''&&C<=''){Res=Res*+(C-'');C=getchar();}
return Res;
}
inline void P(int x)
{
Num=;if(!x){putchar('');puts("");return;}
while(x>)CH[++Num]=x%,x/=;
while(Num)putchar(CH[Num--]+);
puts("");
}
void makeblock()
{
sz=(int)sqrt((double)n); if(!sz) sz=;
for(sum=;sum*sz<n;sum++)
{
l[sum]=r[sum-]+;
r[sum]=sum*sz;
for(int i=l[sum];i<=r[sum];i++) num[i]=sum;
}
l[sum]=r[sum-]+;
r[sum]=n;
for(int i=l[sum];i<=r[sum];i++) num[i]=sum;
}
void LiSan()
{
sort(b+,b+n+);
for(int i=;i<=n;i++)
{
if(b[i].v!=b[i-].v) en++;
ma[a[b[i].p]=en]=b[i].v;
}
}
void makeplv()
{
for(int i=;i<=n;i++)
for(int j=num[i];j<=sum;j++)
plv[a[i]][j]++;
}
void makemode()
{
for(int i=;i<=sum;i++)
{
memset(Time,,sizeof(Time));
int modenow,modeplv=;
for(int j=i;j<=sum;j++)
{
for(int k=l[j];k<=r[j];k++)
{
Time[a[k]]++;
if(Time[a[k]]>modeplv||(Time[a[k]]==modeplv&&a[k]<modenow))
{
modenow=a[k];
modeplv=Time[a[k]];
}
}
mode[i][j]=modenow;
mplv[i][j]=modeplv;
}
} memset(Time,,sizeof(Time));
}
int Getplv(const int &v,const int &L,const int &R){return plv[v][R]-plv[v][L-];}
int main()
{
n=G(); m=G();
for(int i=;i<=n;i++) {b[i].v=G(); b[i].p=i;}
makeblock(); LiSan(); makeplv(); makemode();
for(int i=;i<=m;i++)
{
x=G(); y=G(); x=(x+ans-)%n+; y=(y+ans-)%n+;
if(x>y) swap(x,y);
int modenow,modeplv=;
if(num[x]+>=num[y])
{
for(int j=x;j<=y;j++)
{
Time[a[j]]++;
if(Time[a[j]]>modeplv||(Time[a[j]]==modeplv&&a[j]<modenow))
{
modenow=a[j];
modeplv=Time[a[j]];
}
}
for(int j=x;j<=y;j++) Time[a[j]]--;
}
else
{
modenow=mode[num[x]+][num[y]-];
modeplv=mplv[num[x]+][num[y]-];
for(int j=x;j<=r[num[x]];j++)
{
Time[a[j]]++; int t=Time[a[j]]+Getplv(a[j],num[x]+,num[y]-);
if(t>modeplv||(t==modeplv&&a[j]<modenow))
{
modenow=a[j];
modeplv=t;
}
}
for(int j=l[num[y]];j<=y;j++)
{
Time[a[j]]++; int t=Time[a[j]]+Getplv(a[j],num[x]+,num[y]-);
if(t>modeplv||(t==modeplv&&a[j]<modenow))
{
modenow=a[j];
modeplv=t;
}
}
for(int j=x;j<=r[num[x]];j++) Time[a[j]]--;
for(int j=l[num[y]];j<=y;j++) Time[a[j]]--;
}
P(ans=ma[modenow]);
}
return ;
}

【分块】bzoj2724 [Violet 6]蒲公英的更多相关文章

  1. [BZOJ2724][Violet 6]蒲公英

    [BZOJ2724][Violet 6]蒲公英 试题描述 输入 修正一下 l = (l_0 + x - 1) mod n + 1, r = (r_0 + x - 1) mod n + 1 输出 输入示 ...

  2. BZOJ2724 [Violet 6]蒲公英 分块

    原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ2724.html 题目传送门 - BZOJ2724 题意 求区间最小众数,强制在线. $n$ 个数,$m ...

  3. bzoj2724: [Violet 6]蒲公英(分块)

    传送门 md调了一个晚上最后发现竟然是空间开小了……明明算出来够的…… 讲真其实我以前不太瞧得起分块,觉得这种基于暴力的数据结构一点美感都没有.然而今天做了这道分块的题才发现分块的暴力之美(如果我空间 ...

  4. bzoj2724: [Violet 6]蒲公英(离散化+分块)

    我好弱啊..这题调了2天QwQ 题目大意:给定一个长度为n(n<=40000)的序列,m(m<=50000)次询问l~r之间出现次数最多的数.(区间众数) 这题如果用主席树就可以不用处理一 ...

  5. bzoj2724: [Violet 6]蒲公英 分块 区间众数 论algorithm与vector的正确打开方式

    这个,要处理各个数的话得先离散,我用的桶. 我们先把每个块里的和每个块区间的众数找出来,那么在查询的时候,可能成为[l,r]区间的众数的数只有中间区间的众数和两边的数. 证明:若不是这里的数连区间的众 ...

  6. 【BZOJ2724】[Violet 6]蒲公英 分块+二分

    [BZOJ2724][Violet 6]蒲公英 Description Input 修正一下 l = (l_0 + x - 1) mod n + 1, r = (r_0 + x - 1) mod n ...

  7. BZOJ 2724: [Violet 6]蒲公英( 分块 )

    虽然AC了但是时间惨不忍睹...不科学....怎么会那么慢呢... 无修改的区间众数..分块, 预处理出Mode[i][j]表示第i块到第j块的众数, sum[i][j]表示前i块j出现次数(前缀和, ...

  8. BZOJ_2724_[Violet 6]蒲公英_分块

    BZOJ_2724_[Violet 6]蒲公英_分块 Description Input 修正一下 l = (l_0 + x - 1) mod n + 1, r = (r_0 + x - 1) mod ...

  9. BZOJ 2724: [Violet 6]蒲公英

    2724: [Violet 6]蒲公英 Time Limit: 40 Sec  Memory Limit: 512 MBSubmit: 1633  Solved: 563[Submit][Status ...

随机推荐

  1. async的用法

    package com.example.administrator.myapplication; import android.os.AsyncTask; import android.util.Lo ...

  2. vue遇到的坑(一)——数组更新

    最近在项目中遇到个问题,数组已经更新了,但是页面中的DOM并没有触发变化.我一直以来的想法就是: 既然vue实现的实时数据双向绑定,那么在model层发生了变化之后为什么就没有在view层更新呢? 在 ...

  3. Linux : 多线程下载工具: axel

    wget 应该是最常用的下载工具了,但是其不支持多线程下载. axel 安装 epel 源有 axel 的二进制包,可以使用 yum 安装. yum install epel-release yum ...

  4. 01-导航实例-QQ空间Demo示例程序源代码

    01-导航实例-QQ空间.zip62.4 KB // MJLoginViewController.h Map // //  MJLoginViewController.h //  01-导航实例-QQ ...

  5. 【洛谷 P2346】四子连棋(状态压缩,搜索)

    其实这题可以直接二进制状压做,1表示黑棋,0表示白棋,另外记录下2个空点的位置就行了. 具体看代码(冗长): #include <iostream> #include <cstdio ...

  6. [bzoj1486][HNOI2009]最小圈——分数规划+spfa+负环

    题目 传送门 题解 这个题是一个经典的分数规划问题. 把题目形式化地表示,就是 \[Minimize\ \lambda = \frac{\sum W_{i, i+1}}{k}\] 整理一下,就是 \[ ...

  7. USACO月赛2005 january volume

    2013-09-18 08:12 由题可知,ans=∑i  ∑j(x[i]-x[j]) 最后整理完之后应该是不同系数的X[i]相加,所以这道题就成了求不同x[i]的系数 对于X[i],它需要减前面(i ...

  8. 哪些情况会导致OOM

    1. 堆溢出 java堆用于存储对象实例,只要不断地创建对象,并且这些对象不会被回收(什么情况对象不会被回收呢?如:由于GC Root到对象之间有可达路径,所以垃圾回收机制不会清除这些对象),那么,当 ...

  9. Idea设置全白色 背景

    IDEA设置全白色背景 标签(空格分隔): 工具使用 编辑框白色设置 菜单栏白色设置

  10. docker从零开始 存储(四)tmpfs挂载

    使用tmpfs挂载 volume和bind mounts允许您在主机和容器之间共享文件,以便即使在容器停止后也可以保留数据. 如果你在Linux上运行Docker,你有第三个选择:tmpfs moun ...