Problem Statement

There are N cities. There are also K roads and L railways, extending between the cities. The i-th road bidirectionally connects the pi-th and qi-th cities, and the i-th railway bidirectionally connects the ri-th and si-th cities. No two roads connect the same pair of cities. Similarly, no two railways connect the same pair of cities.

We will say city A and B are connected by roads if city B is reachable from city Aby traversing some number of roads. Here, any city is considered to be connected to itself by roads. We will also define connectivity by railways similarly.

For each city, find the number of the cities connected to that city by both roads and railways.

Constraints

  • 2≦N≦2*105
  • 1≦K,L≦105
  • 1≦pi,qi,ri,siN
  • pi<qi
  • ri<si
  • When ij(pi,qi)≠(pj,qj)
  • When ij(ri,si)≠(rj,sj)

Input

The input is given from Standard Input in the following format:

N K L
p1 q1
:
pK qK
r1 s1
:
rL sL

Output

Print N integers. The i-th of them should represent the number of the cities connected to the i-th city by both roads and railways.

Sample Input 1

4 3 1
1 2
2 3
3 4
2 3

Sample Output 1

1 2 2 1

All the four cities are connected to each other by roads.

By railways, only the second and third cities are connected. Thus, the answers for the cities are 1,2,2 and 1, respectively.

Sample Input 2

4 2 2
1 2
2 3
1 4
2 3

Sample Output 2

1 2 2 1

Sample Input 3

7 4 4
1 2
2 3
2 5
6 7
3 5
4 5
3 4
6 7

Sample Output 3

1 1 2 1 2 2 2

就用并查集暴力预处理出两张图的连通情况,然后每个并查集开个set,暴力枚举每个点,在两个图中查交集就行。注意每次查出来的交集里面的点一并记录答案并删除。

#include<cstdio>
#include<set>
using namespace std;
int fa[2][200010],__rank[2][200010];
int findroot(bool op,int x)
{
return x==fa[op][x] ? x : fa[op][x]=findroot(op,fa[op][x]);
}
void Union(bool op,int U,int V)
{
if(__rank[op][U]<__rank[op][V])
fa[op][U]=V;
else
{
fa[op][V]=U;
if(__rank[op][U]==__rank[op][V])
++__rank[op][U];
}
}
int n,m,K;
bool vis[200010];
int anss[200010];
set<int>S[2][200010];
typedef set<int>::iterator ITER;
int path[200010],e;
int main()
{
int x,y;
scanf("%d%d%d",&n,&m,&K);
for(int i=1;i<=n;++i)
fa[0][i]=fa[1][i]=i;
for(int i=1;i<=m;++i)
{
scanf("%d%d",&x,&y);
int f1=findroot(0,x),f2=findroot(0,y);
if(f1!=f2)
Union(0,f1,f2);
}
for(int i=1;i<=K;++i)
{
scanf("%d%d",&x,&y);
int f1=findroot(1,x),f2=findroot(1,y);
if(f1!=f2)
Union(1,f1,f2);
}
for(int i=0;i<=1;++i)
for(int j=1;j<=n;++j)
S[i][findroot(i,j)].insert(j);
for(int i=1;i<=n;++i) if(!vis[i])
{
e=0;
int rt[2];
bool o=0;
rt[0]=findroot(0,i);
rt[1]=findroot(1,i);
if(S[0][rt[0]].size()>S[1][rt[1]].size())
o=1;
set<int> tS=S[o][rt[o]];
for(ITER it=tS.begin();it!=tS.end();++it)
if(S[o^1][rt[o^1]].find(*it)!=S[o^1][rt[o^1]].end())
{
S[o][rt[o]].erase(*it);
S[o^1][rt[o^1]].erase(*it);
path[++e]=(*it);
vis[*it]=1;
}
for(int j=1;j<=e;++j)
anss[path[j]]=e;
}
for(int i=1;i<n;++i)
printf("%d ",anss[i]);
printf("%d\n",anss[n]);
return 0;
}

【并查集】【set】AtCoder - 2159 - 連結 / Connectivity的更多相关文章

  1. Atcoder 2159 連結 / Connectivity(并查集+map乱搞)

    問題文N 個の都市があり.K 本の道路と L 本の鉄道が都市の間に伸びています. i 番目の道路は pi 番目と qi 番目の都市を双方向に結び. i 番目の鉄道は ri 番目と si 番目の都市を双 ...

  2. AtCoder Beginner Contest 049 & ARC065 連結 / Connectivity AtCoder - 2159 (并查集)

    Problem Statement There are N cities. There are also K roads and L railways, extending between the c ...

  3. D - 連結 / Connectivity 并查集

    http://abc049.contest.atcoder.jp/tasks/arc065_b 一开始做这题的时候,就直接蒙逼了,n是2e5,如果真的要算出每一个节点u能否到达任意一个节点i,这不是f ...

  4. AtCoder Beginner Contest 120 D - Decayed Bridges(并查集)

    题目链接:https://atcoder.jp/contests/abc120/tasks/abc120_d 题意 先给m条边,然后按顺序慢慢删掉边,求每一次删掉之后有多少对(i,j)不连通(我应该解 ...

  5. AtCoder NIKKEI Programming Contest 2019 E. Weights on Vertices and Edges (并查集)

    题目链接:https://atcoder.jp/contests/nikkei2019-qual/tasks/nikkei2019_qual_e 题意:给出一个 n 个点 m 条边的无向图,每个点和每 ...

  6. AtCoder Beginner Contest 247 F - Cards // dp + 并查集

    原题链接:F - Cards (atcoder.jp) 题意: 给定N张牌,每张牌正反面各有一个数,所有牌的正面.反面分别构成大小为N的排列P,Q. 求有多少种摆放方式,使得N张牌朝上的数字构成一个1 ...

  7. XJOI 3578 排列交换/AtCoder beginner contest 097D equal (并查集)

    题目描述: 你有一个1到N的排列P1,P2,P3...PN,还有M对数(x1,y1),(x2,y2),....,(xM,yM),现在你可以选取任意对数,每对数可以选取任意次,然后对选择的某对数(xi, ...

  8. AtCoder Beginner Contest 177 D - Friends (并查集)

    题意:有\(n\)个人,给你\(m\)对朋友关系,朋友的朋友也是朋友,现在你想要将他们拆散放到不同的集合中,且每个集合中的人没有任何一对朋友关系,问最少需要多少集合. 题解:首先用并查集将朋友关系维护 ...

  9. BZOJ 4199: [Noi2015]品酒大会 [后缀数组 带权并查集]

    4199: [Noi2015]品酒大会 UOJ:http://uoj.ac/problem/131 一年一度的“幻影阁夏日品酒大会”隆重开幕了.大会包含品尝和趣味挑战两个环节,分别向优胜者颁发“首席品 ...

随机推荐

  1. I/O多路转接-epoll

    By francis_hao    Aug 5,2017   APUE讲多路转接的章节介绍了select.pselect和poll函数.而epoll是linux内核在2.5.44引入的.在glibc ...

  2. 用@Component注解代替@Configuration注解,定义bean

    package com.timo.entity; import org.springframework.beans.factory.annotation.Value; import org.sprin ...

  3. springboot搭建web项目(转)

    转:http://blog.csdn.net/linzhiqiang0316/article/details/52589789 这几天一直在研究IDEA上面怎么搭建一个web-mvc的SpringBo ...

  4. LVS+Keepalived搭建MyCAT高可用負載均衡集群

    1.前面我们已经搭建好mysql主主,并且用mycat实现双写功能,主要配置文件: [root@mycat2 conf]# cat schema.xml <?xml version=" ...

  5. maven2应用之jar插件使用介绍

    [转载声明] 转载时必须标注:本文来源于铁木箱子的博客http://www.mzone.cc [本文地址] 本文永久地址是:http://www.mzone.cc/article/236.html 有 ...

  6. Android布局优化思考

    一.关于RelativeLayout和LinearLayout的使用 由源码可以知道,RelativeLayout需要对其子View进行两次measure过程,而LinearLayout只需一次mea ...

  7. python并发进程

    1 引言 2 创建进程 2.1 通过定义函数的方式创建进程 2.2 通过定义类的方式创建进程 3 Process中常用属性和方法 3.1 守护进程:daemon 3.2 进程终结于存活检查:termi ...

  8. bzoj4759 [Usaco2017 Jan]Balanced Photo

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4759 [题解] 排序,从大到小插入,树状数组统计. # include <vector ...

  9. 河南省第十届省赛 Intelligent Parking Building

    title: Intelligent Parking Building 河南省第十届省赛 tags: [模拟,省赛] 题目描述: There is a new revolution in the pa ...

  10. python学习 - yield

    def myYield2(): for i in range(3): yield '2222 i am in myYield2', 'i = ', i def myYield(): for i in ...