stl_algo.h
stl_algo.h
// Filename: <stl_algo.h> // Comment By: 凝霜
// E-mail: mdl2009@vip.qq.com
// Blog: http://blog.csdn.net/mdl13412 // 这个文件中定义了一些STL关键的算法, 我仅仅给出一个思路,
// 不进行详尽讲解, 具体算法请参考算法书籍, 推荐《算法导论》
// 另外, 对于基础薄弱的, 推荐《大话数据结构》, 此书我读了一下
// 试读章节, 适合初学者学习 /*
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Hewlett-Packard Company makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
* Copyright (c) 1996
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*/ /* NOTE: This is an internal header file, included by other STL headers.
* You should not attempt to use it directly.
*/ #ifndef __SGI_STL_INTERNAL_ALGO_H
#define __SGI_STL_INTERNAL_ALGO_H #include <stl_heap.h> __STL_BEGIN_NAMESPACE #if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma set woff 1209
#endif // 选取a, b, c三个数中间的那个
template <class T>
inline const T& __median(const T& a, const T& b, const T& c) {
if (a < b)
if (b < c)
return b;
else if (a < c)
return c;
else
return a;
else if (a < c)
return a;
else if (b < c)
return c;
else
return b;
} template <class T, class Compare>
inline const T& __median(const T& a, const T& b, const T& c, Compare comp) {
if (comp(a, b))
if (comp(b, c))
return b;
else if (comp(a, c))
return c;
else
return a;
else if (comp(a, c))
return a;
else if (comp(b, c))
return c;
else
return b;
} // 对于[first, last)区间内的元素调用判别式
// 个人非常喜欢这个函数, 在C#中这个是语言层面就支持的
template <class InputIterator, class Function>
Function for_each(InputIterator first, InputIterator last, Function f) {
for ( ; first != last; ++first)
f(*first);
return f;
} // 查找指定区间内第一个值为value的元素
template <class InputIterator, class T>
InputIterator find(InputIterator first, InputIterator last, const T& value)
{
while (first != last && *first != value) ++first;
return first;
} // 查找指定区间内第一个满足判别式额元素
template <class InputIterator, class Predicate>
InputIterator find_if(InputIterator first, InputIterator last,
Predicate pred)
{
while (first != last && !pred(*first)) ++first;
return first;
} // 找出第一组满足条件的相邻元素
template <class ForwardIterator>
ForwardIterator adjacent_find(ForwardIterator first, ForwardIterator last)
{
if (first == last) return last;
ForwardIterator next = first;
while(++next != last) {
// 判断是否满足条件, 满足就返回
if (*first == *next) return first;
first = next;
}
return last;
} // 使用用户指定的二元比较判别式, 其余同上面
template <class ForwardIterator, class BinaryPredicate>
ForwardIterator adjacent_find(ForwardIterator first, ForwardIterator last,
BinaryPredicate binary_pred)
{
if (first == last) return last;
ForwardIterator next = first;
while(++next != last) {
if (binary_pred(*first, *next)) return first;
first = next;
}
return last;
} // 统计指定元素在指定区间内出现的次数
template <class InputIterator, class T, class Size>
void count(InputIterator first, InputIterator last, const T& value,
Size& n)
{
// 统计操作要历遍整个区间
for ( ; first != last; ++first)
if (*first == value)
++n;
} // 统计满足指定判别式的元素的个数
template <class InputIterator, class Predicate, class Size>
void count_if(InputIterator first, InputIterator last, Predicate pred,
Size& n) {
for ( ; first != last; ++first)
if (pred(*first))
++n;
} #ifdef __STL_CLASS_PARTIAL_SPECIALIZATION template <class InputIterator, class T>
typename iterator_traits<InputIterator>::difference_type
count(InputIterator first, InputIterator last, const T& value)
{
typename iterator_traits<InputIterator>::difference_type n = ;
for ( ; first != last; ++first)
if (*first == value)
++n;
return n;
} template <class InputIterator, class Predicate>
typename iterator_traits<InputIterator>::difference_type
count_if(InputIterator first, InputIterator last, Predicate pred) {
typename iterator_traits<InputIterator>::difference_type n = ;
for ( ; first != last; ++first)
if (pred(*first))
++n;
return n;
} #endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */ template <class ForwardIterator1, class ForwardIterator2, class Distance1,
class Distance2>
ForwardIterator1 __search(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
Distance1*, Distance2*) {
Distance1 d1 = ;
distance(first1, last1, d1);
Distance2 d2 = ;
distance(first2, last2, d2); if (d1 < d2) return last1; ForwardIterator1 current1 = first1;
ForwardIterator2 current2 = first2; while (current2 != last2)
if (*current1 == *current2) {
++current1;
++current2;
}
else {
if (d1 == d2)
return last1;
else {
current1 = ++first1;
current2 = first2;
--d1;
}
}
return first1;
} // 在[first1, last1)区间内, 查找[first2, last2)区间
// 为了效率, 进行函数派发
template <class ForwardIterator1, class ForwardIterator2>
inline ForwardIterator1 search(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2)
{
return __search(first1, last1, first2, last2, distance_type(first1),
distance_type(first2));
} template <class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate, class Distance1, class Distance2>
ForwardIterator1 __search(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
BinaryPredicate binary_pred, Distance1*, Distance2*) {
Distance1 d1 = ;
distance(first1, last1, d1);
Distance2 d2 = ;
distance(first2, last2, d2); if (d1 < d2) return last1; ForwardIterator1 current1 = first1;
ForwardIterator2 current2 = first2; while (current2 != last2)
if (binary_pred(*current1, *current2)) {
++current1;
++current2;
}
else {
if (d1 == d2)
return last1;
else {
current1 = ++first1;
current2 = first2;
--d1;
}
}
return first1;
} template <class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>
inline ForwardIterator1 search(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
BinaryPredicate binary_pred) {
return __search(first1, last1, first2, last2, binary_pred,
distance_type(first1), distance_type(first2));
} // 在[first, last)内查找第一个满足连续count个value的位置
template <class ForwardIterator, class Integer, class T>
ForwardIterator search_n(ForwardIterator first, ForwardIterator last,
Integer count, const T& value)
{
if (count <= )
return first;
else {
first = find(first, last, value);
while (first != last) {
Integer n = count - ;
ForwardIterator i = first;
++i;
while (i != last && n != && *i == value) {
++i;
--n;
}
if (n == )
return first;
else
first = find(i, last, value);
}
return last;
}
} // 好吧, 二元判别式自己指定的
template <class ForwardIterator, class Integer, class T, class BinaryPredicate>
ForwardIterator search_n(ForwardIterator first, ForwardIterator last,
Integer count, const T& value,
BinaryPredicate binary_pred) {
if (count <= )
return first;
else {
while (first != last) {
if (binary_pred(*first, value)) break;
++first;
}
while (first != last) {
Integer n = count - ;
ForwardIterator i = first;
++i;
while (i != last && n != && binary_pred(*i, value)) {
++i;
--n;
}
if (n == )
return first;
else {
while (i != last) {
if (binary_pred(*i, value)) break;
++i;
}
first = i;
}
}
return last;
}
} // 交换两个区间内的元素, 要求长度相同
template <class ForwardIterator1, class ForwardIterator2>
ForwardIterator2 swap_ranges(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2)
{
for ( ; first1 != last1; ++first1, ++first2)
iter_swap(first1, first2);
return first2;
} // 将[first, last)经判别式转换到result处
template <class InputIterator, class OutputIterator, class UnaryOperation>
OutputIterator transform(InputIterator first, InputIterator last,
OutputIterator result, UnaryOperation op)
{
for ( ; first != last; ++first, ++result)
*result = op(*first);
return result;
} // 这个多了一个区间
template <class InputIterator1, class InputIterator2, class OutputIterator,
class BinaryOperation>
OutputIterator transform(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, OutputIterator result,
BinaryOperation binary_op)
{
for ( ; first1 != last1; ++first1, ++first2, ++result)
*result = binary_op(*first1, *first2);
return result;
} // 将[first, last)内的old_value都以new_value替代
template <class ForwardIterator, class T>
void replace(ForwardIterator first, ForwardIterator last, const T& old_value,
const T& new_value)
{
for ( ; first != last; ++first)
if (*first == old_value) *first = new_value;
} // 将[first, last)内的满足判别式的元素都以new_value代替
template <class ForwardIterator, class Predicate, class T>
void replace_if(ForwardIterator first, ForwardIterator last, Predicate pred,
const T& new_value)
{
for ( ; first != last; ++first)
if (pred(*first)) *first = new_value;
} // 与replace唯一不同的是会将元素复制到新的位置
template <class InputIterator, class OutputIterator, class T>
OutputIterator replace_copy(InputIterator first, InputIterator last,
OutputIterator result, const T& old_value,
const T& new_value)
{
for ( ; first != last; ++first, ++result)
*result = *first == old_value ? new_value : *first;
return result;
} // 同上
template <class Iterator, class OutputIterator, class Predicate, class T>
OutputIterator replace_copy_if(Iterator first, Iterator last,
OutputIterator result, Predicate pred,
const T& new_value)
{
for ( ; first != last; ++first, ++result)
*result = pred(*first) ? new_value : *first;
return result;
} // 将仿函数的处理结果填充在[first, last)区间内
// 对于用户自定义类型要提供operator =()
template <class ForwardIterator, class Generator>
void generate(ForwardIterator first, ForwardIterator last, Generator gen)
{
for ( ; first != last; ++first)
*first = gen();
} // 和generate()差不多, 只是给定的是起点和个数
template <class OutputIterator, class Size, class Generator>
OutputIterator generate_n(OutputIterator first, Size n, Generator gen)
{
for ( ; n > ; --n, ++first)
*first = gen();
return first;
} // 将[first, last)中除了value的元素拷贝到result处
// 注意: 这里使用的是operator =(), 用户自定义类型要注意资源的析构
template <class InputIterator, class OutputIterator, class T>
OutputIterator remove_copy(InputIterator first, InputIterator last,
OutputIterator result, const T& value)
{
for ( ; first != last; ++first)
if (*first != value) {
*result = *first;
++result;
}
return result;
} // 将[first, last)中除了满足判别式的元素拷贝到result处
// 注意: 这里使用的是operator =(), 用户自定义类型要注意资源的析构
template <class InputIterator, class OutputIterator, class Predicate>
OutputIterator remove_copy_if(InputIterator first, InputIterator last,
OutputIterator result, Predicate pred)
{
for ( ; first != last; ++first)
if (!pred(*first)) {
*result = *first;
++result;
}
return result;
} // 移除指定值的元素, 但是并不删除
template <class ForwardIterator, class T>
ForwardIterator remove(ForwardIterator first, ForwardIterator last,
const T& value)
{
first = find(first, last, value);
ForwardIterator next = first;
return first == last ? first : remove_copy(++next, last, first, value);
} // 移除满足判别式的元素, 但是并不删除
template <class ForwardIterator, class Predicate>
ForwardIterator remove_if(ForwardIterator first, ForwardIterator last,
Predicate pred)
{
first = find_if(first, last, pred);
ForwardIterator next = first;
return first == last ? first : remove_copy_if(++next, last, first, pred);
} template <class InputIterator, class ForwardIterator>
ForwardIterator __unique_copy(InputIterator first, InputIterator last,
ForwardIterator result, forward_iterator_tag) {
*result = *first;
while (++first != last)
if (*result != *first) *++result = *first;
return ++result;
} template <class InputIterator, class OutputIterator, class T>
OutputIterator __unique_copy(InputIterator first, InputIterator last,
OutputIterator result, T*) {
T value = *first;
*result = value;
while (++first != last)
if (value != *first) {
value = *first;
*++result = value;
}
return ++result;
} template <class InputIterator, class OutputIterator>
inline OutputIterator __unique_copy(InputIterator first, InputIterator last,
OutputIterator result,
output_iterator_tag) {
return __unique_copy(first, last, result, value_type(first));
} template <class InputIterator, class OutputIterator>
inline OutputIterator unique_copy(InputIterator first, InputIterator last,
OutputIterator result) {
if (first == last) return result;
return __unique_copy(first, last, result, iterator_category(result));
}
template <class InputIterator, class ForwardIterator, class BinaryPredicate>
ForwardIterator __unique_copy(InputIterator first, InputIterator last,
ForwardIterator result,
BinaryPredicate binary_pred,
forward_iterator_tag) {
*result = *first;
while (++first != last)
if (!binary_pred(*result, *first)) *++result = *first;
return ++result;
} template <class InputIterator, class OutputIterator, class BinaryPredicate,
class T>
OutputIterator __unique_copy(InputIterator first, InputIterator last,
OutputIterator result,
BinaryPredicate binary_pred, T*) {
T value = *first;
*result = value;
while (++first != last)
if (!binary_pred(value, *first)) {
value = *first;
*++result = value;
}
return ++result;
} template <class InputIterator, class OutputIterator, class BinaryPredicate>
inline OutputIterator __unique_copy(InputIterator first, InputIterator last,
OutputIterator result,
BinaryPredicate binary_pred,
output_iterator_tag) {
return __unique_copy(first, last, result, binary_pred, value_type(first));
} template <class InputIterator, class OutputIterator, class BinaryPredicate>
inline OutputIterator unique_copy(InputIterator first, InputIterator last,
OutputIterator result,
BinaryPredicate binary_pred) {
if (first == last) return result;
return __unique_copy(first, last, result, binary_pred,
iterator_category(result));
} // 删除所有相邻重复元素
template <class ForwardIterator>
ForwardIterator unique(ForwardIterator first, ForwardIterator last)
{
first = adjacent_find(first, last);
return unique_copy(first, last, first);
} // 好吧, 删除所有相邻重复元素, 并拷贝到指定位置
template <class ForwardIterator, class BinaryPredicate>
ForwardIterator unique(ForwardIterator first, ForwardIterator last,
BinaryPredicate binary_pred)
{
first = adjacent_find(first, last, binary_pred);
return unique_copy(first, last, first, binary_pred);
} template <class BidirectionalIterator>
void __reverse(BidirectionalIterator first, BidirectionalIterator last,
bidirectional_iterator_tag)
{
while (true)
if (first == last || first == --last)
return;
else
iter_swap(first++, last);
} template <class RandomAccessIterator>
void __reverse(RandomAccessIterator first, RandomAccessIterator last,
random_access_iterator_tag)
{
while (first < last) iter_swap(first++, --last);
} // 将[first, last)内的元素倒置
// 还是为了效率进行函数派发, 不做解释了
template <class BidirectionalIterator>
inline void reverse(BidirectionalIterator first, BidirectionalIterator last)
{
__reverse(first, last, iterator_category(first));
} // 好吧, 和reverse的区别是会把处理后的元素拷贝到新区间
template <class BidirectionalIterator, class OutputIterator>
OutputIterator reverse_copy(BidirectionalIterator first,
BidirectionalIterator last,
OutputIterator result)
{
while (first != last) {
--last;
*result = *last;
++result;
}
return result;
} template <class ForwardIterator, class Distance>
void __rotate(ForwardIterator first, ForwardIterator middle,
ForwardIterator last, Distance*, forward_iterator_tag) {
for (ForwardIterator i = middle; ;) {
iter_swap(first, i);
++first;
++i;
if (first == middle) {
if (i == last) return;
middle = i;
}
else if (i == last)
i = middle;
}
} template <class BidirectionalIterator, class Distance>
void __rotate(BidirectionalIterator first, BidirectionalIterator middle,
BidirectionalIterator last, Distance*,
bidirectional_iterator_tag) {
reverse(first, middle);
reverse(middle, last);
reverse(first, last);
} // 这个你要是都不知道那就马上去学习数据结构的知识吧
template <class EuclideanRingElement>
EuclideanRingElement __gcd(EuclideanRingElement m, EuclideanRingElement n)
{
while (n != ) {
EuclideanRingElement t = m % n;
m = n;
n = t;
}
return m;
} template <class RandomAccessIterator, class Distance, class T>
void __rotate_cycle(RandomAccessIterator first, RandomAccessIterator last,
RandomAccessIterator initial, Distance shift, T*) {
T value = *initial;
RandomAccessIterator ptr1 = initial;
RandomAccessIterator ptr2 = ptr1 + shift;
while (ptr2 != initial) {
*ptr1 = *ptr2;
ptr1 = ptr2;
if (last - ptr2 > shift)
ptr2 += shift;
else
ptr2 = first + (shift - (last - ptr2));
}
*ptr1 = value;
} template <class RandomAccessIterator, class Distance>
void __rotate(RandomAccessIterator first, RandomAccessIterator middle,
RandomAccessIterator last, Distance*,
random_access_iterator_tag) {
Distance n = __gcd(last - first, middle - first);
while (n--)
__rotate_cycle(first, last, first + n, middle - first,
value_type(first));
} // 将[first, middle)和[middle, last)内元素互换
// 还是为了效率, 进行函数派发, 不解释了
template <class ForwardIterator>
inline void rotate(ForwardIterator first, ForwardIterator middle,
ForwardIterator last) {
if (first == middle || middle == last) return;
__rotate(first, middle, last, distance_type(first),
iterator_category(first));
} // 和rotate唯一的区别就是将旋转后的元素拷贝到新位置
template <class ForwardIterator, class OutputIterator>
OutputIterator rotate_copy(ForwardIterator first, ForwardIterator middle,
ForwardIterator last, OutputIterator result) {
return copy(first, middle, copy(middle, last, result));
} template <class RandomAccessIterator, class Distance>
void __random_shuffle(RandomAccessIterator first, RandomAccessIterator last,
Distance*) {
if (first == last) return;
for (RandomAccessIterator i = first + ; i != last; ++i)
#ifdef __STL_NO_DRAND48
iter_swap(i, first + Distance(rand() % ((i - first) + )));
#else
iter_swap(i, first + Distance(lrand48() % ((i - first) + )));
#endif
} template <class RandomAccessIterator>
inline void random_shuffle(RandomAccessIterator first,
RandomAccessIterator last) {
__random_shuffle(first, last, distance_type(first));
} // 产生随机的排列
template <class RandomAccessIterator, class RandomNumberGenerator>
void random_shuffle(RandomAccessIterator first, RandomAccessIterator last,
RandomNumberGenerator& rand)
{
if (first == last) return;
for (RandomAccessIterator i = first + ; i != last; ++i)
iter_swap(i, first + rand((i - first) + ));
} template <class ForwardIterator, class OutputIterator, class Distance>
OutputIterator random_sample_n(ForwardIterator first, ForwardIterator last,
OutputIterator out, const Distance n)
{
Distance remaining = ;
distance(first, last, remaining);
Distance m = min(n, remaining); while (m > ) {
#ifdef __STL_NO_DRAND48
if (rand() % remaining < m) {
#else
if (lrand48() % remaining < m) {
#endif
*out = *first;
++out;
--m;
} --remaining;
++first;
}
return out;
} template <class ForwardIterator, class OutputIterator, class Distance,
class RandomNumberGenerator>
OutputIterator random_sample_n(ForwardIterator first, ForwardIterator last,
OutputIterator out, const Distance n,
RandomNumberGenerator& rand)
{
Distance remaining = ;
distance(first, last, remaining);
Distance m = min(n, remaining); while (m > ) {
if (rand(remaining) < m) {
*out = *first;
++out;
--m;
} --remaining;
++first;
}
return out;
} template <class InputIterator, class RandomAccessIterator, class Distance>
RandomAccessIterator __random_sample(InputIterator first, InputIterator last,
RandomAccessIterator out,
const Distance n)
{
Distance m = ;
Distance t = n;
for ( ; first != last && m < n; ++m, ++first)
out[m] = *first; while (first != last) {
++t;
#ifdef __STL_NO_DRAND48
Distance M = rand() % t;
#else
Distance M = lrand48() % t;
#endif
if (M < n)
out[M] = *first;
++first;
} return out + m;
} template <class InputIterator, class RandomAccessIterator,
class RandomNumberGenerator, class Distance>
RandomAccessIterator __random_sample(InputIterator first, InputIterator last,
RandomAccessIterator out,
RandomNumberGenerator& rand,
const Distance n)
{
Distance m = ;
Distance t = n;
for ( ; first != last && m < n; ++m, ++first)
out[m] = *first; while (first != last) {
++t;
Distance M = rand(t);
if (M < n)
out[M] = *first;
++first;
} return out + m;
} template <class InputIterator, class RandomAccessIterator>
inline RandomAccessIterator
random_sample(InputIterator first, InputIterator last,
RandomAccessIterator out_first, RandomAccessIterator out_last)
{
return __random_sample(first, last, out_first, out_last - out_first);
} template <class InputIterator, class RandomAccessIterator,
class RandomNumberGenerator>
inline RandomAccessIterator
random_sample(InputIterator first, InputIterator last,
RandomAccessIterator out_first, RandomAccessIterator out_last,
RandomNumberGenerator& rand)
{
return __random_sample(first, last, out_first, rand, out_last - out_first);
} // 将[first, last)区间内元素重新排序, 所有满足判别式的元素都被放在前面
template <class BidirectionalIterator, class Predicate>
BidirectionalIterator partition(BidirectionalIterator first,
BidirectionalIterator last, Predicate pred)
{
while (true) {
while (true)
if (first == last)
return first;
else if (pred(*first))
++first;
else
break;
--last;
while (true)
if (first == last)
return first;
else if (!pred(*last))
--last;
else
break;
iter_swap(first, last);
++first;
}
} template <class ForwardIterator, class Predicate, class Distance>
ForwardIterator __inplace_stable_partition(ForwardIterator first,
ForwardIterator last,
Predicate pred, Distance len) {
if (len == ) return pred(*first) ? last : first;
ForwardIterator middle = first;
advance(middle, len / );
ForwardIterator
first_cut = __inplace_stable_partition(first, middle, pred, len / );
ForwardIterator
second_cut = __inplace_stable_partition(middle, last, pred,
len - len / );
rotate(first_cut, middle, second_cut);
len = ;
distance(middle, second_cut, len);
advance(first_cut, len);
return first_cut;
} template <class ForwardIterator, class Pointer, class Predicate,
class Distance>
ForwardIterator __stable_partition_adaptive(ForwardIterator first,
ForwardIterator last,
Predicate pred, Distance len,
Pointer buffer,
Distance buffer_size) {
if (len <= buffer_size) {
ForwardIterator result1 = first;
Pointer result2 = buffer;
for ( ; first != last ; ++first)
if (pred(*first)) {
*result1 = *first;
++result1;
}
else {
*result2 = *first;
++result2;
}
copy(buffer, result2, result1);
return result1;
}
else {
ForwardIterator middle = first;
advance(middle, len / );
ForwardIterator first_cut =
__stable_partition_adaptive(first, middle, pred, len / ,
buffer, buffer_size);
ForwardIterator second_cut =
__stable_partition_adaptive(middle, last, pred, len - len / ,
buffer, buffer_size); rotate(first_cut, middle, second_cut);
len = ;
distance(middle, second_cut, len);
advance(first_cut, len);
return first_cut;
}
} template <class ForwardIterator, class Predicate, class T, class Distance>
inline ForwardIterator __stable_partition_aux(ForwardIterator first,
ForwardIterator last,
Predicate pred, T*, Distance*) {
temporary_buffer<ForwardIterator, T> buf(first, last);
if (buf.size() > )
return __stable_partition_adaptive(first, last, pred,
Distance(buf.requested_size()),
buf.begin(), buf.size());
else
return __inplace_stable_partition(first, last, pred,
Distance(buf.requested_size()));
} template <class ForwardIterator, class Predicate>
inline ForwardIterator stable_partition(ForwardIterator first,
ForwardIterator last,
Predicate pred) {
if (first == last)
return first;
else
return __stable_partition_aux(first, last, pred,
value_type(first), distance_type(first));
} template <class RandomAccessIterator, class T>
RandomAccessIterator __unguarded_partition(RandomAccessIterator first,
RandomAccessIterator last,
T pivot) {
while (true) {
while (*first < pivot) ++first;
--last;
while (pivot < *last) --last;
if (!(first < last)) return first;
iter_swap(first, last);
++first;
}
} template <class RandomAccessIterator, class T, class Compare>
RandomAccessIterator __unguarded_partition(RandomAccessIterator first,
RandomAccessIterator last,
T pivot, Compare comp) {
while () {
while (comp(*first, pivot)) ++first;
--last;
while (comp(pivot, *last)) --last;
if (!(first < last)) return first;
iter_swap(first, last);
++first;
}
} const int __stl_threshold = ; template <class RandomAccessIterator, class T>
void __unguarded_linear_insert(RandomAccessIterator last, T value) {
RandomAccessIterator next = last;
--next;
while (value < *next) {
*last = *next;
last = next;
--next;
}
*last = value;
} template <class RandomAccessIterator, class T, class Compare>
void __unguarded_linear_insert(RandomAccessIterator last, T value,
Compare comp) {
RandomAccessIterator next = last;
--next;
while (comp(value , *next)) {
*last = *next;
last = next;
--next;
}
*last = value;
} template <class RandomAccessIterator, class T>
inline void __linear_insert(RandomAccessIterator first,
RandomAccessIterator last, T*) {
T value = *last;
if (value < *first) {
copy_backward(first, last, last + );
*first = value;
}
else
__unguarded_linear_insert(last, value);
} template <class RandomAccessIterator, class T, class Compare>
inline void __linear_insert(RandomAccessIterator first,
RandomAccessIterator last, T*, Compare comp) {
T value = *last;
if (comp(value, *first)) {
copy_backward(first, last, last + );
*first = value;
}
else
__unguarded_linear_insert(last, value, comp);
} template <class RandomAccessIterator>
void __insertion_sort(RandomAccessIterator first, RandomAccessIterator last) {
if (first == last) return;
for (RandomAccessIterator i = first + ; i != last; ++i)
__linear_insert(first, i, value_type(first));
} template <class RandomAccessIterator, class Compare>
void __insertion_sort(RandomAccessIterator first,
RandomAccessIterator last, Compare comp) {
if (first == last) return;
for (RandomAccessIterator i = first + ; i != last; ++i)
__linear_insert(first, i, value_type(first), comp);
} template <class RandomAccessIterator, class T>
void __unguarded_insertion_sort_aux(RandomAccessIterator first,
RandomAccessIterator last, T*) {
for (RandomAccessIterator i = first; i != last; ++i)
__unguarded_linear_insert(i, T(*i));
} template <class RandomAccessIterator>
inline void __unguarded_insertion_sort(RandomAccessIterator first,
RandomAccessIterator last) {
__unguarded_insertion_sort_aux(first, last, value_type(first));
} template <class RandomAccessIterator, class T, class Compare>
void __unguarded_insertion_sort_aux(RandomAccessIterator first,
RandomAccessIterator last,
T*, Compare comp) {
for (RandomAccessIterator i = first; i != last; ++i)
__unguarded_linear_insert(i, T(*i), comp);
} template <class RandomAccessIterator, class Compare>
inline void __unguarded_insertion_sort(RandomAccessIterator first,
RandomAccessIterator last,
Compare comp) {
__unguarded_insertion_sort_aux(first, last, value_type(first), comp);
} template <class RandomAccessIterator>
void __final_insertion_sort(RandomAccessIterator first,
RandomAccessIterator last) {
if (last - first > __stl_threshold) {
__insertion_sort(first, first + __stl_threshold);
__unguarded_insertion_sort(first + __stl_threshold, last);
}
else
__insertion_sort(first, last);
} template <class RandomAccessIterator, class Compare>
void __final_insertion_sort(RandomAccessIterator first,
RandomAccessIterator last, Compare comp) {
if (last - first > __stl_threshold) {
__insertion_sort(first, first + __stl_threshold, comp);
__unguarded_insertion_sort(first + __stl_threshold, last, comp);
}
else
__insertion_sort(first, last, comp);
} template <class Size>
inline Size __lg(Size n) {
Size k;
for (k = ; n > ; n >>= ) ++k;
return k;
} template <class RandomAccessIterator, class T, class Size>
void __introsort_loop(RandomAccessIterator first,
RandomAccessIterator last, T*,
Size depth_limit) {
while (last - first > __stl_threshold) {
if (depth_limit == ) {
partial_sort(first, last, last);
return;
}
--depth_limit;
RandomAccessIterator cut = __unguarded_partition
(first, last, T(__median(*first, *(first + (last - first)/),
*(last - ))));
__introsort_loop(cut, last, value_type(first), depth_limit);
last = cut;
}
} template <class RandomAccessIterator, class T, class Size, class Compare>
void __introsort_loop(RandomAccessIterator first,
RandomAccessIterator last, T*,
Size depth_limit, Compare comp) {
while (last - first > __stl_threshold) {
if (depth_limit == ) {
partial_sort(first, last, last, comp);
return;
}
--depth_limit;
RandomAccessIterator cut = __unguarded_partition
(first, last, T(__median(*first, *(first + (last - first)/),
*(last - ), comp)), comp);
__introsort_loop(cut, last, value_type(first), depth_limit, comp);
last = cut;
}
} // 必须为随RandomAccessIterator, 排序算法要根据情况进行派发
template <class RandomAccessIterator>
inline void sort(RandomAccessIterator first, RandomAccessIterator last)
{
if (first != last) {
__introsort_loop(first, last, value_type(first), __lg(last - first) * );
__final_insertion_sort(first, last);
}
} template <class RandomAccessIterator, class Compare>
inline void sort(RandomAccessIterator first, RandomAccessIterator last,
Compare comp) {
if (first != last) {
__introsort_loop(first, last, value_type(first), __lg(last - first) * ,
comp);
__final_insertion_sort(first, last, comp);
}
} template <class RandomAccessIterator>
void __inplace_stable_sort(RandomAccessIterator first,
RandomAccessIterator last) {
if (last - first < ) {
__insertion_sort(first, last);
return;
}
RandomAccessIterator middle = first + (last - first) / ;
__inplace_stable_sort(first, middle);
__inplace_stable_sort(middle, last);
__merge_without_buffer(first, middle, last, middle - first, last - middle);
} template <class RandomAccessIterator, class Compare>
void __inplace_stable_sort(RandomAccessIterator first,
RandomAccessIterator last, Compare comp) {
if (last - first < ) {
__insertion_sort(first, last, comp);
return;
}
RandomAccessIterator middle = first + (last - first) / ;
__inplace_stable_sort(first, middle, comp);
__inplace_stable_sort(middle, last, comp);
__merge_without_buffer(first, middle, last, middle - first,
last - middle, comp);
} template <class RandomAccessIterator1, class RandomAccessIterator2,
class Distance>
void __merge_sort_loop(RandomAccessIterator1 first,
RandomAccessIterator1 last,
RandomAccessIterator2 result, Distance step_size) {
Distance two_step = * step_size; while (last - first >= two_step) {
result = merge(first, first + step_size,
first + step_size, first + two_step, result);
first += two_step;
} step_size = min(Distance(last - first), step_size);
merge(first, first + step_size, first + step_size, last, result);
} template <class RandomAccessIterator1, class RandomAccessIterator2,
class Distance, class Compare>
void __merge_sort_loop(RandomAccessIterator1 first,
RandomAccessIterator1 last,
RandomAccessIterator2 result, Distance step_size,
Compare comp) {
Distance two_step = * step_size; while (last - first >= two_step) {
result = merge(first, first + step_size,
first + step_size, first + two_step, result, comp);
first += two_step;
}
step_size = min(Distance(last - first), step_size); merge(first, first + step_size, first + step_size, last, result, comp);
} const int __stl_chunk_size = ; template <class RandomAccessIterator, class Distance>
void __chunk_insertion_sort(RandomAccessIterator first,
RandomAccessIterator last, Distance chunk_size) {
while (last - first >= chunk_size) {
__insertion_sort(first, first + chunk_size);
first += chunk_size;
}
__insertion_sort(first, last);
} template <class RandomAccessIterator, class Distance, class Compare>
void __chunk_insertion_sort(RandomAccessIterator first,
RandomAccessIterator last,
Distance chunk_size, Compare comp) {
while (last - first >= chunk_size) {
__insertion_sort(first, first + chunk_size, comp);
first += chunk_size;
}
__insertion_sort(first, last, comp);
} template <class RandomAccessIterator, class Pointer, class Distance>
void __merge_sort_with_buffer(RandomAccessIterator first,
RandomAccessIterator last,
Pointer buffer, Distance*) {
Distance len = last - first;
Pointer buffer_last = buffer + len; Distance step_size = __stl_chunk_size;
__chunk_insertion_sort(first, last, step_size); while (step_size < len) {
__merge_sort_loop(first, last, buffer, step_size);
step_size *= ;
__merge_sort_loop(buffer, buffer_last, first, step_size);
step_size *= ;
}
} template <class RandomAccessIterator, class Pointer, class Distance,
class Compare>
void __merge_sort_with_buffer(RandomAccessIterator first,
RandomAccessIterator last, Pointer buffer,
Distance*, Compare comp) {
Distance len = last - first;
Pointer buffer_last = buffer + len; Distance step_size = __stl_chunk_size;
__chunk_insertion_sort(first, last, step_size, comp); while (step_size < len) {
__merge_sort_loop(first, last, buffer, step_size, comp);
step_size *= ;
__merge_sort_loop(buffer, buffer_last, first, step_size, comp);
step_size *= ;
}
} template <class RandomAccessIterator, class Pointer, class Distance>
void __stable_sort_adaptive(RandomAccessIterator first,
RandomAccessIterator last, Pointer buffer,
Distance buffer_size) {
Distance len = (last - first + ) / ;
RandomAccessIterator middle = first + len;
if (len > buffer_size) {
__stable_sort_adaptive(first, middle, buffer, buffer_size);
__stable_sort_adaptive(middle, last, buffer, buffer_size);
} else {
__merge_sort_with_buffer(first, middle, buffer, (Distance*));
__merge_sort_with_buffer(middle, last, buffer, (Distance*));
}
__merge_adaptive(first, middle, last, Distance(middle - first),
Distance(last - middle), buffer, buffer_size);
} template <class RandomAccessIterator, class Pointer, class Distance,
class Compare>
void __stable_sort_adaptive(RandomAccessIterator first,
RandomAccessIterator last, Pointer buffer,
Distance buffer_size, Compare comp) {
Distance len = (last - first + ) / ;
RandomAccessIterator middle = first + len;
if (len > buffer_size) {
__stable_sort_adaptive(first, middle, buffer, buffer_size,
comp);
__stable_sort_adaptive(middle, last, buffer, buffer_size,
comp);
} else {
__merge_sort_with_buffer(first, middle, buffer, (Distance*), comp);
__merge_sort_with_buffer(middle, last, buffer, (Distance*), comp);
}
__merge_adaptive(first, middle, last, Distance(middle - first),
Distance(last - middle), buffer, buffer_size,
comp);
} template <class RandomAccessIterator, class T, class Distance>
inline void __stable_sort_aux(RandomAccessIterator first,
RandomAccessIterator last, T*, Distance*) {
temporary_buffer<RandomAccessIterator, T> buf(first, last);
if (buf.begin() == )
__inplace_stable_sort(first, last);
else
__stable_sort_adaptive(first, last, buf.begin(), Distance(buf.size()));
} template <class RandomAccessIterator, class T, class Distance, class Compare>
inline void __stable_sort_aux(RandomAccessIterator first,
RandomAccessIterator last, T*, Distance*,
Compare comp) {
temporary_buffer<RandomAccessIterator, T> buf(first, last);
if (buf.begin() == )
__inplace_stable_sort(first, last, comp);
else
__stable_sort_adaptive(first, last, buf.begin(), Distance(buf.size()),
comp);
} template <class RandomAccessIterator>
inline void stable_sort(RandomAccessIterator first,
RandomAccessIterator last) {
__stable_sort_aux(first, last, value_type(first), distance_type(first));
} template <class RandomAccessIterator, class Compare>
inline void stable_sort(RandomAccessIterator first,
RandomAccessIterator last, Compare comp) {
__stable_sort_aux(first, last, value_type(first), distance_type(first),
comp);
} template <class RandomAccessIterator, class T>
void __partial_sort(RandomAccessIterator first, RandomAccessIterator middle,
RandomAccessIterator last, T*) {
make_heap(first, middle);
for (RandomAccessIterator i = middle; i < last; ++i)
if (*i < *first)
__pop_heap(first, middle, i, T(*i), distance_type(first));
sort_heap(first, middle);
} // 只保证[first, middle)有序, 效率至上时使用
template <class RandomAccessIterator>
inline void partial_sort(RandomAccessIterator first,
RandomAccessIterator middle,
RandomAccessIterator last)
{
__partial_sort(first, middle, last, value_type(first));
} template <class RandomAccessIterator, class T, class Compare>
void __partial_sort(RandomAccessIterator first, RandomAccessIterator middle,
RandomAccessIterator last, T*, Compare comp) {
make_heap(first, middle, comp);
for (RandomAccessIterator i = middle; i < last; ++i)
if (comp(*i, *first))
__pop_heap(first, middle, i, T(*i), comp, distance_type(first));
sort_heap(first, middle, comp);
} template <class RandomAccessIterator, class Compare>
inline void partial_sort(RandomAccessIterator first,
RandomAccessIterator middle,
RandomAccessIterator last, Compare comp) {
__partial_sort(first, middle, last, value_type(first), comp);
} template <class InputIterator, class RandomAccessIterator, class Distance,
class T>
RandomAccessIterator __partial_sort_copy(InputIterator first,
InputIterator last,
RandomAccessIterator result_first,
RandomAccessIterator result_last,
Distance*, T*) {
if (result_first == result_last) return result_last;
RandomAccessIterator result_real_last = result_first;
while(first != last && result_real_last != result_last) {
*result_real_last = *first;
++result_real_last;
++first;
}
make_heap(result_first, result_real_last);
while (first != last) {
if (*first < *result_first)
__adjust_heap(result_first, Distance(),
Distance(result_real_last - result_first), T(*first));
++first;
}
sort_heap(result_first, result_real_last);
return result_real_last;
} template <class InputIterator, class RandomAccessIterator>
inline RandomAccessIterator
partial_sort_copy(InputIterator first, InputIterator last,
RandomAccessIterator result_first,
RandomAccessIterator result_last) {
return __partial_sort_copy(first, last, result_first, result_last,
distance_type(result_first), value_type(first));
} template <class InputIterator, class RandomAccessIterator, class Compare,
class Distance, class T>
RandomAccessIterator __partial_sort_copy(InputIterator first,
InputIterator last,
RandomAccessIterator result_first,
RandomAccessIterator result_last,
Compare comp, Distance*, T*) {
if (result_first == result_last) return result_last;
RandomAccessIterator result_real_last = result_first;
while(first != last && result_real_last != result_last) {
*result_real_last = *first;
++result_real_last;
++first;
}
make_heap(result_first, result_real_last, comp);
while (first != last) {
if (comp(*first, *result_first))
__adjust_heap(result_first, Distance(),
Distance(result_real_last - result_first), T(*first),
comp);
++first;
}
sort_heap(result_first, result_real_last, comp);
return result_real_last;
} template <class InputIterator, class RandomAccessIterator, class Compare>
inline RandomAccessIterator
partial_sort_copy(InputIterator first, InputIterator last,
RandomAccessIterator result_first,
RandomAccessIterator result_last, Compare comp) {
return __partial_sort_copy(first, last, result_first, result_last, comp,
distance_type(result_first), value_type(first));
} template <class RandomAccessIterator, class T>
void __nth_element(RandomAccessIterator first, RandomAccessIterator nth,
RandomAccessIterator last, T*) {
while (last - first > ) {
RandomAccessIterator cut = __unguarded_partition
(first, last, T(__median(*first, *(first + (last - first)/),
*(last - ))));
if (cut <= nth)
first = cut;
else
last = cut;
}
__insertion_sort(first, last);
} template <class RandomAccessIterator>
inline void nth_element(RandomAccessIterator first, RandomAccessIterator nth,
RandomAccessIterator last) {
__nth_element(first, nth, last, value_type(first));
} template <class RandomAccessIterator, class T, class Compare>
void __nth_element(RandomAccessIterator first, RandomAccessIterator nth,
RandomAccessIterator last, T*, Compare comp) {
while (last - first > ) {
RandomAccessIterator cut = __unguarded_partition
(first, last, T(__median(*first, *(first + (last - first)/),
*(last - ), comp)), comp);
if (cut <= nth)
first = cut;
else
last = cut;
}
__insertion_sort(first, last, comp);
} template <class RandomAccessIterator, class Compare>
inline void nth_element(RandomAccessIterator first, RandomAccessIterator nth,
RandomAccessIterator last, Compare comp) {
__nth_element(first, nth, last, value_type(first), comp);
} template <class ForwardIterator, class T, class Distance>
ForwardIterator __lower_bound(ForwardIterator first, ForwardIterator last,
const T& value, Distance*,
forward_iterator_tag) {
Distance len = ;
distance(first, last, len);
Distance half;
ForwardIterator middle; while (len > ) {
half = len >> ;
middle = first;
advance(middle, half);
if (*middle < value) {
first = middle;
++first;
len = len - half - ;
}
else
len = half;
}
return first;
} template <class RandomAccessIterator, class T, class Distance>
RandomAccessIterator __lower_bound(RandomAccessIterator first,
RandomAccessIterator last, const T& value,
Distance*, random_access_iterator_tag) {
Distance len = last - first;
Distance half;
RandomAccessIterator middle; while (len > ) {
half = len >> ;
middle = first + half;
if (*middle < value) {
first = middle + ;
len = len - half - ;
}
else
len = half;
}
return first;
} // 用于有序区间, 返回第一个大于value的位置
// 同样为了效率, 要进行函数派发
template <class ForwardIterator, class T>
inline ForwardIterator lower_bound(ForwardIterator first, ForwardIterator last,
const T& value)
{
return __lower_bound(first, last, value, distance_type(first),
iterator_category(first));
} template <class ForwardIterator, class T, class Compare, class Distance>
ForwardIterator __lower_bound(ForwardIterator first, ForwardIterator last,
const T& value, Compare comp, Distance*,
forward_iterator_tag) {
Distance len = ;
distance(first, last, len);
Distance half;
ForwardIterator middle; while (len > ) {
half = len >> ;
middle = first;
advance(middle, half);
if (comp(*middle, value)) {
first = middle;
++first;
len = len - half - ;
}
else
len = half;
}
return first;
} template <class RandomAccessIterator, class T, class Compare, class Distance>
RandomAccessIterator __lower_bound(RandomAccessIterator first,
RandomAccessIterator last,
const T& value, Compare comp, Distance*,
random_access_iterator_tag) {
Distance len = last - first;
Distance half;
RandomAccessIterator middle; while (len > ) {
half = len >> ;
middle = first + half;
if (comp(*middle, value)) {
first = middle + ;
len = len - half - ;
}
else
len = half;
}
return first;
} template <class ForwardIterator, class T, class Compare>
inline ForwardIterator lower_bound(ForwardIterator first, ForwardIterator last,
const T& value, Compare comp) {
return __lower_bound(first, last, value, comp, distance_type(first),
iterator_category(first));
} template <class ForwardIterator, class T, class Distance>
ForwardIterator __upper_bound(ForwardIterator first, ForwardIterator last,
const T& value, Distance*,
forward_iterator_tag) {
Distance len = ;
distance(first, last, len);
Distance half;
ForwardIterator middle; while (len > ) {
half = len >> ;
middle = first;
advance(middle, half);
if (value < *middle)
len = half;
else {
first = middle;
++first;
len = len - half - ;
}
}
return first;
} template <class RandomAccessIterator, class T, class Distance>
RandomAccessIterator __upper_bound(RandomAccessIterator first,
RandomAccessIterator last, const T& value,
Distance*, random_access_iterator_tag) {
Distance len = last - first;
Distance half;
RandomAccessIterator middle; while (len > ) {
half = len >> ;
middle = first + half;
if (value < *middle)
len = half;
else {
first = middle + ;
len = len - half - ;
}
}
return first;
} template <class ForwardIterator, class T>
inline ForwardIterator upper_bound(ForwardIterator first, ForwardIterator last,
const T& value) {
return __upper_bound(first, last, value, distance_type(first),
iterator_category(first));
} template <class ForwardIterator, class T, class Compare, class Distance>
ForwardIterator __upper_bound(ForwardIterator first, ForwardIterator last,
const T& value, Compare comp, Distance*,
forward_iterator_tag) {
Distance len = ;
distance(first, last, len);
Distance half;
ForwardIterator middle; while (len > ) {
half = len >> ;
middle = first;
advance(middle, half);
if (comp(value, *middle))
len = half;
else {
first = middle;
++first;
len = len - half - ;
}
}
return first;
} template <class RandomAccessIterator, class T, class Compare, class Distance>
RandomAccessIterator __upper_bound(RandomAccessIterator first,
RandomAccessIterator last,
const T& value, Compare comp, Distance*,
random_access_iterator_tag) {
Distance len = last - first;
Distance half;
RandomAccessIterator middle; while (len > ) {
half = len >> ;
middle = first + half;
if (comp(value, *middle))
len = half;
else {
first = middle + ;
len = len - half - ;
}
}
return first;
} template <class ForwardIterator, class T, class Compare>
inline ForwardIterator upper_bound(ForwardIterator first, ForwardIterator last,
const T& value, Compare comp) {
return __upper_bound(first, last, value, comp, distance_type(first),
iterator_category(first));
} template <class ForwardIterator, class T, class Distance>
pair<ForwardIterator, ForwardIterator>
__equal_range(ForwardIterator first, ForwardIterator last, const T& value,
Distance*, forward_iterator_tag) {
Distance len = ;
distance(first, last, len);
Distance half;
ForwardIterator middle, left, right; while (len > ) {
half = len >> ;
middle = first;
advance(middle, half);
if (*middle < value) {
first = middle;
++first;
len = len - half - ;
}
else if (value < *middle)
len = half;
else {
left = lower_bound(first, middle, value);
advance(first, len);
right = upper_bound(++middle, first, value);
return pair<ForwardIterator, ForwardIterator>(left, right);
}
}
return pair<ForwardIterator, ForwardIterator>(first, first);
} template <class RandomAccessIterator, class T, class Distance>
pair<RandomAccessIterator, RandomAccessIterator>
__equal_range(RandomAccessIterator first, RandomAccessIterator last,
const T& value, Distance*, random_access_iterator_tag) {
Distance len = last - first;
Distance half;
RandomAccessIterator middle, left, right; while (len > ) {
half = len >> ;
middle = first + half;
if (*middle < value) {
first = middle + ;
len = len - half - ;
}
else if (value < *middle)
len = half;
else {
left = lower_bound(first, middle, value);
right = upper_bound(++middle, first + len, value);
return pair<RandomAccessIterator, RandomAccessIterator>(left,
right);
}
}
return pair<RandomAccessIterator, RandomAccessIterator>(first, first);
} template <class ForwardIterator, class T>
inline pair<ForwardIterator, ForwardIterator>
equal_range(ForwardIterator first, ForwardIterator last, const T& value) {
return __equal_range(first, last, value, distance_type(first),
iterator_category(first));
} template <class ForwardIterator, class T, class Compare, class Distance>
pair<ForwardIterator, ForwardIterator>
__equal_range(ForwardIterator first, ForwardIterator last, const T& value,
Compare comp, Distance*, forward_iterator_tag) {
Distance len = ;
distance(first, last, len);
Distance half;
ForwardIterator middle, left, right; while (len > ) {
half = len >> ;
middle = first;
advance(middle, half);
if (comp(*middle, value)) {
first = middle;
++first;
len = len - half - ;
}
else if (comp(value, *middle))
len = half;
else {
left = lower_bound(first, middle, value, comp);
advance(first, len);
right = upper_bound(++middle, first, value, comp);
return pair<ForwardIterator, ForwardIterator>(left, right);
}
}
return pair<ForwardIterator, ForwardIterator>(first, first);
} template <class RandomAccessIterator, class T, class Compare, class Distance>
pair<RandomAccessIterator, RandomAccessIterator>
__equal_range(RandomAccessIterator first, RandomAccessIterator last,
const T& value, Compare comp, Distance*,
random_access_iterator_tag) {
Distance len = last - first;
Distance half;
RandomAccessIterator middle, left, right; while (len > ) {
half = len >> ;
middle = first + half;
if (comp(*middle, value)) {
first = middle + ;
len = len - half - ;
}
else if (comp(value, *middle))
len = half;
else {
left = lower_bound(first, middle, value, comp);
right = upper_bound(++middle, first + len, value, comp);
return pair<RandomAccessIterator, RandomAccessIterator>(left,
right);
}
}
return pair<RandomAccessIterator, RandomAccessIterator>(first, first);
} template <class ForwardIterator, class T, class Compare>
inline pair<ForwardIterator, ForwardIterator>
equal_range(ForwardIterator first, ForwardIterator last, const T& value,
Compare comp) {
return __equal_range(first, last, value, comp, distance_type(first),
iterator_category(first));
} // 用于有序区间的二分查找, 不知道的赶快去学数据结构
template <class ForwardIterator, class T>
bool binary_search(ForwardIterator first, ForwardIterator last,
const T& value) {
ForwardIterator i = lower_bound(first, last, value);
return i != last && !(value < *i);
} template <class ForwardIterator, class T, class Compare>
bool binary_search(ForwardIterator first, ForwardIterator last, const T& value,
Compare comp) {
ForwardIterator i = lower_bound(first, last, value, comp);
return i != last && !comp(value, *i);
} // 将两个有序区间合并起来, 并保证其也有序
template <class InputIterator1, class InputIterator2, class OutputIterator>
OutputIterator merge(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result)
{
while (first1 != last1 && first2 != last2) {
if (*first2 < *first1) {
*result = *first2;
++first2;
}
else {
*result = *first1;
++first1;
}
++result;
}
return copy(first2, last2, copy(first1, last1, result));
} template <class InputIterator1, class InputIterator2, class OutputIterator,
class Compare>
OutputIterator merge(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp)
{
while (first1 != last1 && first2 != last2) {
if (comp(*first2, *first1)) {
*result = *first2;
++first2;
}
else {
*result = *first1;
++first1;
}
++result;
}
return copy(first2, last2, copy(first1, last1, result));
} template <class BidirectionalIterator, class Distance>
void __merge_without_buffer(BidirectionalIterator first,
BidirectionalIterator middle,
BidirectionalIterator last,
Distance len1, Distance len2) {
if (len1 == || len2 == ) return;
if (len1 + len2 == ) {
if (*middle < *first) iter_swap(first, middle);
return;
}
BidirectionalIterator first_cut = first;
BidirectionalIterator second_cut = middle;
Distance len11 = ;
Distance len22 = ;
if (len1 > len2) {
len11 = len1 / ;
advance(first_cut, len11);
second_cut = lower_bound(middle, last, *first_cut);
distance(middle, second_cut, len22);
}
else {
len22 = len2 / ;
advance(second_cut, len22);
first_cut = upper_bound(first, middle, *second_cut);
distance(first, first_cut, len11);
}
rotate(first_cut, middle, second_cut);
BidirectionalIterator new_middle = first_cut;
advance(new_middle, len22);
__merge_without_buffer(first, first_cut, new_middle, len11, len22);
__merge_without_buffer(new_middle, second_cut, last, len1 - len11,
len2 - len22);
} template <class BidirectionalIterator, class Distance, class Compare>
void __merge_without_buffer(BidirectionalIterator first,
BidirectionalIterator middle,
BidirectionalIterator last,
Distance len1, Distance len2, Compare comp) {
if (len1 == || len2 == ) return;
if (len1 + len2 == ) {
if (comp(*middle, *first)) iter_swap(first, middle);
return;
}
BidirectionalIterator first_cut = first;
BidirectionalIterator second_cut = middle;
Distance len11 = ;
Distance len22 = ;
if (len1 > len2) {
len11 = len1 / ;
advance(first_cut, len11);
second_cut = lower_bound(middle, last, *first_cut, comp);
distance(middle, second_cut, len22);
}
else {
len22 = len2 / ;
advance(second_cut, len22);
first_cut = upper_bound(first, middle, *second_cut, comp);
distance(first, first_cut, len11);
}
rotate(first_cut, middle, second_cut);
BidirectionalIterator new_middle = first_cut;
advance(new_middle, len22);
__merge_without_buffer(first, first_cut, new_middle, len11, len22, comp);
__merge_without_buffer(new_middle, second_cut, last, len1 - len11,
len2 - len22, comp);
} template <class BidirectionalIterator1, class BidirectionalIterator2,
class Distance>
BidirectionalIterator1 __rotate_adaptive(BidirectionalIterator1 first,
BidirectionalIterator1 middle,
BidirectionalIterator1 last,
Distance len1, Distance len2,
BidirectionalIterator2 buffer,
Distance buffer_size) {
BidirectionalIterator2 buffer_end;
if (len1 > len2 && len2 <= buffer_size) {
buffer_end = copy(middle, last, buffer);
copy_backward(first, middle, last);
return copy(buffer, buffer_end, first);
} else if (len1 <= buffer_size) {
buffer_end = copy(first, middle, buffer);
copy(middle, last, first);
return copy_backward(buffer, buffer_end, last);
} else {
rotate(first, middle, last);
advance(first, len2);
return first;
}
} template <class BidirectionalIterator1, class BidirectionalIterator2,
class BidirectionalIterator3>
BidirectionalIterator3 __merge_backward(BidirectionalIterator1 first1,
BidirectionalIterator1 last1,
BidirectionalIterator2 first2,
BidirectionalIterator2 last2,
BidirectionalIterator3 result) {
if (first1 == last1) return copy_backward(first2, last2, result);
if (first2 == last2) return copy_backward(first1, last1, result);
--last1;
--last2;
while (true) {
if (*last2 < *last1) {
*--result = *last1;
if (first1 == last1) return copy_backward(first2, ++last2, result);
--last1;
}
else {
*--result = *last2;
if (first2 == last2) return copy_backward(first1, ++last1, result);
--last2;
}
}
} template <class BidirectionalIterator1, class BidirectionalIterator2,
class BidirectionalIterator3, class Compare>
BidirectionalIterator3 __merge_backward(BidirectionalIterator1 first1,
BidirectionalIterator1 last1,
BidirectionalIterator2 first2,
BidirectionalIterator2 last2,
BidirectionalIterator3 result,
Compare comp) {
if (first1 == last1) return copy_backward(first2, last2, result);
if (first2 == last2) return copy_backward(first1, last1, result);
--last1;
--last2;
while (true) {
if (comp(*last2, *last1)) {
*--result = *last1;
if (first1 == last1) return copy_backward(first2, ++last2, result);
--last1;
}
else {
*--result = *last2;
if (first2 == last2) return copy_backward(first1, ++last1, result);
--last2;
}
}
} template <class BidirectionalIterator, class Distance, class Pointer>
void __merge_adaptive(BidirectionalIterator first,
BidirectionalIterator middle,
BidirectionalIterator last, Distance len1, Distance len2,
Pointer buffer, Distance buffer_size) {
if (len1 <= len2 && len1 <= buffer_size) {
Pointer end_buffer = copy(first, middle, buffer);
merge(buffer, end_buffer, middle, last, first);
}
else if (len2 <= buffer_size) {
Pointer end_buffer = copy(middle, last, buffer);
__merge_backward(first, middle, buffer, end_buffer, last);
}
else {
BidirectionalIterator first_cut = first;
BidirectionalIterator second_cut = middle;
Distance len11 = ;
Distance len22 = ;
if (len1 > len2) {
len11 = len1 / ;
advance(first_cut, len11);
second_cut = lower_bound(middle, last, *first_cut);
distance(middle, second_cut, len22);
}
else {
len22 = len2 / ;
advance(second_cut, len22);
first_cut = upper_bound(first, middle, *second_cut);
distance(first, first_cut, len11);
}
BidirectionalIterator new_middle =
__rotate_adaptive(first_cut, middle, second_cut, len1 - len11,
len22, buffer, buffer_size);
__merge_adaptive(first, first_cut, new_middle, len11, len22, buffer,
buffer_size);
__merge_adaptive(new_middle, second_cut, last, len1 - len11,
len2 - len22, buffer, buffer_size);
}
} template <class BidirectionalIterator, class Distance, class Pointer,
class Compare>
void __merge_adaptive(BidirectionalIterator first,
BidirectionalIterator middle,
BidirectionalIterator last, Distance len1, Distance len2,
Pointer buffer, Distance buffer_size, Compare comp) {
if (len1 <= len2 && len1 <= buffer_size) {
Pointer end_buffer = copy(first, middle, buffer);
merge(buffer, end_buffer, middle, last, first, comp);
}
else if (len2 <= buffer_size) {
Pointer end_buffer = copy(middle, last, buffer);
__merge_backward(first, middle, buffer, end_buffer, last, comp);
}
else {
BidirectionalIterator first_cut = first;
BidirectionalIterator second_cut = middle;
Distance len11 = ;
Distance len22 = ;
if (len1 > len2) {
len11 = len1 / ;
advance(first_cut, len11);
second_cut = lower_bound(middle, last, *first_cut, comp);
distance(middle, second_cut, len22);
}
else {
len22 = len2 / ;
advance(second_cut, len22);
first_cut = upper_bound(first, middle, *second_cut, comp);
distance(first, first_cut, len11);
}
BidirectionalIterator new_middle =
__rotate_adaptive(first_cut, middle, second_cut, len1 - len11,
len22, buffer, buffer_size);
__merge_adaptive(first, first_cut, new_middle, len11, len22, buffer,
buffer_size, comp);
__merge_adaptive(new_middle, second_cut, last, len1 - len11,
len2 - len22, buffer, buffer_size, comp);
}
} template <class BidirectionalIterator, class T, class Distance>
inline void __inplace_merge_aux(BidirectionalIterator first,
BidirectionalIterator middle,
BidirectionalIterator last, T*, Distance*) {
Distance len1 = ;
distance(first, middle, len1);
Distance len2 = ;
distance(middle, last, len2); temporary_buffer<BidirectionalIterator, T> buf(first, last);
if (buf.begin() == )
__merge_without_buffer(first, middle, last, len1, len2);
else
__merge_adaptive(first, middle, last, len1, len2,
buf.begin(), Distance(buf.size()));
} template <class BidirectionalIterator, class T, class Distance, class Compare>
inline void __inplace_merge_aux(BidirectionalIterator first,
BidirectionalIterator middle,
BidirectionalIterator last, T*, Distance*,
Compare comp) {
Distance len1 = ;
distance(first, middle, len1);
Distance len2 = ;
distance(middle, last, len2); temporary_buffer<BidirectionalIterator, T> buf(first, last);
if (buf.begin() == )
__merge_without_buffer(first, middle, last, len1, len2, comp);
else
__merge_adaptive(first, middle, last, len1, len2,
buf.begin(), Distance(buf.size()),
comp);
} template <class BidirectionalIterator>
inline void inplace_merge(BidirectionalIterator first,
BidirectionalIterator middle,
BidirectionalIterator last) {
if (first == middle || middle == last) return;
__inplace_merge_aux(first, middle, last, value_type(first),
distance_type(first));
} template <class BidirectionalIterator, class Compare>
inline void inplace_merge(BidirectionalIterator first,
BidirectionalIterator middle,
BidirectionalIterator last, Compare comp) {
if (first == middle || middle == last) return;
__inplace_merge_aux(first, middle, last, value_type(first),
distance_type(first), comp);
} // 判断[first2, last2)是否包含在[first1, last1)中,
// 注意: 两个区间要保证有序, 如果容器是降序排列, 那么要使用另一个版本,
// 并使用greater<>()来比较
template <class InputIterator1, class InputIterator2>
bool includes(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2)
{
while (first1 != last1 && first2 != last2)
if (*first2 < *first1)
return false;
else if(*first1 < *first2)
++first1;
else
++first1, ++first2; return first2 == last2;
} // 除了自己指定判别式, 其余同上
template <class InputIterator1, class InputIterator2, class Compare>
bool includes(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2, Compare comp)
{
while (first1 != last1 && first2 != last2)
if (comp(*first2, *first1))
return false;
else if(comp(*first1, *first2))
++first1;
else
++first1, ++first2; return first2 == last2;
} ////////////////////////////////////////////////////////////////////////////////
// 四个集合相关算法
//////////////////////////////////////////////////////////////////////////////// // 求两个集合的的并集, 和数学定义的并集有一些不一样
// 对于两个集合S1[first1, last1)和S2[first2, last2)
// 假设其中k元素在S1中出现n1次, 在S2中出现n2次
// 那么求出的并集选取max(n1, n2)为并集内k元素个数
// 注意: 集合相关操作均要求区间有序, 后面不再强调
template <class InputIterator1, class InputIterator2, class OutputIterator>
OutputIterator set_union(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result)
{
// 先进行历遍操作
while (first1 != last1 && first2 != last2) {
// 这里把现在能确定的并集先加入到result中
// 先把较小的加入到结果中, 否则如果相等, 那么也要加入
if (*first1 < *first2) {
*result = *first1;
++first1;
}
else if (*first2 < *first1) {
*result = *first2;
++first2;
}
else {
*result = *first1;
++first1;
++first2;
}
++result;
} // 将剩余的元素加入到并集中
return copy(first2, last2, copy(first1, last1, result));
} // 使用用户指定的二元比较判别式, 其余同上面
template <class InputIterator1, class InputIterator2, class OutputIterator,
class Compare>
OutputIterator set_union(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp)
{
while (first1 != last1 && first2 != last2) {
if (comp(*first1, *first2)) {
*result = *first1;
++first1;
}
else if (comp(*first2, *first1)) {
*result = *first2;
++first2;
}
else {
*result = *first1;
++first1;
++first2;
}
++result;
}
return copy(first2, last2, copy(first1, last1, result));
} // 求两个集合的的交集, 和数学定义的并集有一些不一样
// 对于两个集合S1[first1, last1)和S2[first2, last2)
// 假设其中k元素在S1中出现n1次, 在S2中出现n2次
// 那么求出的交集选取min(n1, n2)为交集内k元素个数
template <class InputIterator1, class InputIterator2, class OutputIterator>
OutputIterator set_intersection(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result)
{
// 算法很简单, 不进行说明
while (first1 != last1 && first2 != last2)
if (*first1 < *first2)
++first1;
else if (*first2 < *first1)
++first2;
else {
*result = *first1;
++first1;
++first2;
++result;
}
return result;
} // 使用用户指定的二元比较判别式, 其余同上面
template <class InputIterator1, class InputIterator2, class OutputIterator,
class Compare>
OutputIterator set_intersection(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp)
{
while (first1 != last1 && first2 != last2)
if (comp(*first1, *first2))
++first1;
else if (comp(*first2, *first1))
++first2;
else {
*result = *first1;
++first1;
++first2;
++result;
}
return result;
} // 求两个集合的的差集, 和数学定义的并集有一些不一样
// 对于两个集合S1[first1, last1)和S2[first2, last2)
// 假设其中k元素在S1中出现n1次, 在S2中出现n2次
// 那么求出的差集选取max(n1 - n2, 0)为差集内k元素个数
template <class InputIterator1, class InputIterator2, class OutputIterator>
OutputIterator set_difference(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result)
{
while (first1 != last1 && first2 != last2)
if (*first1 < *first2) { // 找到了一个合适的元素, 加入到结果中
*result = *first1; // 向后调整迭代器
++first1;
++result;
}
else if (*first2 < *first1) // 元素不合适, 调整迭代器
++first2;
else { // 这个用来处理出现相同元素的情况
++first1;
++first2;
} // 将剩余的元素加入到结果中
return copy(first1, last1, result);
} // 使用用户指定的二元比较判别式, 其余同上面
template <class InputIterator1, class InputIterator2, class OutputIterator,
class Compare>
OutputIterator set_difference(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp) {
while (first1 != last1 && first2 != last2)
if (comp(*first1, *first2)) {
*result = *first1;
++first1;
++result;
}
else if (comp(*first2, *first1))
++first2;
else {
++first1;
++first2;
}
return copy(first1, last1, result);
} // 求两个集合的的对称差集, 和数学定义的并集有一些不一样
// 其用公式可以表示为(S1 - S2) U (S2 - S1)
// 对于两个集合S1[first1, last1)和S2[first2, last2)
// 假设其中k元素在S1中出现n1次, 在S2中出现n2次
// 那么结果中会出现|n1 - n2|个k元素
template <class InputIterator1, class InputIterator2, class OutputIterator>
OutputIterator set_symmetric_difference(InputIterator1 first1,
InputIterator1 last1,
InputIterator2 first2,
InputIterator2 last2,
OutputIterator result)
{
// 算法和上面的差不多, 不解释
while (first1 != last1 && first2 != last2)
if (*first1 < *first2) {
*result = *first1;
++first1;
++result;
}
else if (*first2 < *first1) {
*result = *first2;
++first2;
++result;
}
else {
++first1;
++first2;
} return copy(first2, last2, copy(first1, last1, result));
} // 使用用户指定的二元比较判别式, 其余同上面
template <class InputIterator1, class InputIterator2, class OutputIterator,
class Compare>
OutputIterator set_symmetric_difference(InputIterator1 first1,
InputIterator1 last1,
InputIterator2 first2,
InputIterator2 last2,
OutputIterator result, Compare comp)
{
while (first1 != last1 && first2 != last2)
if (comp(*first1, *first2)) {
*result = *first1;
++first1;
++result;
}
else if (comp(*first2, *first1)) {
*result = *first2;
++first2;
++result;
}
else {
++first1;
++first2;
}
return copy(first2, last2, copy(first1, last1, result));
} // 查找指定区间内最大的元素
template <class ForwardIterator>
ForwardIterator max_element(ForwardIterator first, ForwardIterator last)
{
if (first == last) return first;
ForwardIterator result = first;
while (++first != last)
if (*result < *first) result = first;
return result;
} // 使用用户指定的二元比较判别式, 其余同上面
template <class ForwardIterator, class Compare>
ForwardIterator max_element(ForwardIterator first, ForwardIterator last,
Compare comp)
{
if (first == last) return first;
ForwardIterator result = first;
while (++first != last)
if (comp(*result, *first)) result = first;
return result;
} // 查找指定区间内最小的元素
template <class ForwardIterator>
ForwardIterator min_element(ForwardIterator first, ForwardIterator last)
{
if (first == last) return first;
ForwardIterator result = first;
while (++first != last)
if (*first < *result) result = first;
return result;
} template <class ForwardIterator, class Compare>
ForwardIterator min_element(ForwardIterator first, ForwardIterator last,
Compare comp)
{
if (first == last) return first;
ForwardIterator result = first;
while (++first != last)
if (comp(*first, *result)) result = first;
return result;
} // 获取下一个全排列
template <class BidirectionalIterator>
bool next_permutation(BidirectionalIterator first,
BidirectionalIterator last)
{
if (first == last) return false;
BidirectionalIterator i = first;
++i;
if (i == last) return false;
i = last;
--i; for(;;) {
BidirectionalIterator ii = i;
--i;
if (*i < *ii) {
BidirectionalIterator j = last;
while (!(*i < *--j));
iter_swap(i, j);
reverse(ii, last);
return true;
}
if (i == first) {
reverse(first, last);
return false;
}
}
} template <class BidirectionalIterator, class Compare>
bool next_permutation(BidirectionalIterator first, BidirectionalIterator last,
Compare comp) {
if (first == last) return false;
BidirectionalIterator i = first;
++i;
if (i == last) return false;
i = last;
--i; for(;;) {
BidirectionalIterator ii = i;
--i;
if (comp(*i, *ii)) {
BidirectionalIterator j = last;
while (!comp(*i, *--j));
iter_swap(i, j);
reverse(ii, last);
return true;
}
if (i == first) {
reverse(first, last);
return false;
}
}
} template <class BidirectionalIterator>
bool prev_permutation(BidirectionalIterator first,
BidirectionalIterator last) {
if (first == last) return false;
BidirectionalIterator i = first;
++i;
if (i == last) return false;
i = last;
--i; for(;;) {
BidirectionalIterator ii = i;
--i;
if (*ii < *i) {
BidirectionalIterator j = last;
while (!(*--j < *i));
iter_swap(i, j);
reverse(ii, last);
return true;
}
if (i == first) {
reverse(first, last);
return false;
}
}
} // 获取前一个全排列
template <class BidirectionalIterator, class Compare>
bool prev_permutation(BidirectionalIterator first, BidirectionalIterator last,
Compare comp) {
if (first == last) return false;
BidirectionalIterator i = first;
++i;
if (i == last) return false;
i = last;
--i; for(;;) {
BidirectionalIterator ii = i;
--i;
if (comp(*ii, *i)) {
BidirectionalIterator j = last;
while (!comp(*--j, *i));
iter_swap(i, j);
reverse(ii, last);
return true;
}
if (i == first) {
reverse(first, last);
return false;
}
}
} // 在区间[first1, last1)内查找区间[first2, last2)第一次出现的位置
template <class InputIterator, class ForwardIterator>
InputIterator find_first_of(InputIterator first1, InputIterator last1,
ForwardIterator first2, ForwardIterator last2)
{
for ( ; first1 != last1; ++first1)
for (ForwardIterator iter = first2; iter != last2; ++iter)
if (*first1 == *iter)
return first1;
return last1;
} // 使用用户指定的判别式, 其余同上面
template <class InputIterator, class ForwardIterator, class BinaryPredicate>
InputIterator find_first_of(InputIterator first1, InputIterator last1,
ForwardIterator first2, ForwardIterator last2,
BinaryPredicate comp)
{
for ( ; first1 != last1; ++first1)
for (ForwardIterator iter = first2; iter != last2; ++iter)
if (comp(*first1, *iter))
return first1;
return last1;
} // Search [first2, last2) as a subsequence in [first1, last1). // find_end for forward iterators.
template <class ForwardIterator1, class ForwardIterator2>
ForwardIterator1 __find_end(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
forward_iterator_tag, forward_iterator_tag)
{
if (first2 == last2) // 如果查找的目标区间为空, 那么就返回last1
return last1;
else {
ForwardIterator1 result = last1;
while () {
// 查找匹配区间
ForwardIterator1 new_result = search(first1, last1, first2, last2);
if (new_result == last1) // 没找到
return result;
else { // 找到了, 准备看后面还有没有匹配区间
result = new_result;
first1 = new_result;
++first1;
}
}
}
} template <class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>
ForwardIterator1 __find_end(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
forward_iterator_tag, forward_iterator_tag,
BinaryPredicate comp)
{
if (first2 == last2)
return last1;
else {
ForwardIterator1 result = last1;
while () {
ForwardIterator1 new_result = search(first1, last1, first2, last2, comp);
if (new_result == last1)
return result;
else {
result = new_result;
first1 = new_result;
++first1;
}
}
}
} // find_end for bidirectional iterators. Requires partial specialization.
#ifdef __STL_CLASS_PARTIAL_SPECIALIZATION template <class BidirectionalIterator1, class BidirectionalIterator2>
BidirectionalIterator1
__find_end(BidirectionalIterator1 first1, BidirectionalIterator1 last1,
BidirectionalIterator2 first2, BidirectionalIterator2 last2,
bidirectional_iterator_tag, bidirectional_iterator_tag)
{
typedef reverse_iterator<BidirectionalIterator1> reviter1;
typedef reverse_iterator<BidirectionalIterator2> reviter2; reviter1 rlast1(first1);
reviter2 rlast2(first2);
reviter1 rresult = search(reviter1(last1), rlast1, reviter2(last2), rlast2); if (rresult == rlast1)
return last1;
else {
BidirectionalIterator1 result = rresult.base();
advance(result, -distance(first2, last2));
return result;
}
} // 可以逆向查找, 速度块
template <class BidirectionalIterator1, class BidirectionalIterator2,
class BinaryPredicate>
BidirectionalIterator1
__find_end(BidirectionalIterator1 first1, BidirectionalIterator1 last1,
BidirectionalIterator2 first2, BidirectionalIterator2 last2,
bidirectional_iterator_tag, bidirectional_iterator_tag,
BinaryPredicate comp)
{
typedef reverse_iterator<BidirectionalIterator1> reviter1;
typedef reverse_iterator<BidirectionalIterator2> reviter2; reviter1 rlast1(first1);
reviter2 rlast2(first2);
reviter1 rresult = search(reviter1(last1), rlast1, reviter2(last2), rlast2,
comp); if (rresult == rlast1)
return last1;
else {
BidirectionalIterator1 result = rresult.base();
advance(result, -distance(first2, last2));
return result;
}
}
#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */ // 在区间[first1, last1)内查找区间[first2, last2)最后一次出现的位置
template <class ForwardIterator1, class ForwardIterator2>
inline ForwardIterator1
find_end(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2)
{
// 这里根据是否能逆向查找来派发函数
#ifdef __STL_CLASS_PARTIAL_SPECIALIZATION
typedef typename iterator_traits<ForwardIterator1>::iterator_category
category1;
typedef typename iterator_traits<ForwardIterator2>::iterator_category
category2;
return __find_end(first1, last1, first2, last2, category1(), category2());
#else /* __STL_CLASS_PARTIAL_SPECIALIZATION */
return __find_end(first1, last1, first2, last2,
forward_iterator_tag(), forward_iterator_tag());
#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
} // 使用用户指定的判别式, 其余同上面
template <class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>
inline ForwardIterator1
find_end(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
BinaryPredicate comp)
{
#ifdef __STL_CLASS_PARTIAL_SPECIALIZATION
typedef typename iterator_traits<ForwardIterator1>::iterator_category
category1;
typedef typename iterator_traits<ForwardIterator2>::iterator_category
category2;
return __find_end(first1, last1, first2, last2, category1(), category2(),
comp);
#else /* __STL_CLASS_PARTIAL_SPECIALIZATION */
return __find_end(first1, last1, first2, last2,
forward_iterator_tag(), forward_iterator_tag(),
comp);
#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
} template <class RandomAccessIterator, class Distance>
bool __is_heap(RandomAccessIterator first, RandomAccessIterator last,
Distance*)
{
const Distance n = last - first; Distance parent = ;
for (Distance child = ; child < n; ++child) {
if (first[parent] < first[child])
return false;
if ((child & ) == )
++parent;
}
return true;
} template <class RandomAccessIterator>
inline bool is_heap(RandomAccessIterator first, RandomAccessIterator last)
{
return __is_heap(first, last, distance_type(first));
} template <class RandomAccessIterator, class Distance, class StrictWeakOrdering>
bool __is_heap(RandomAccessIterator first, RandomAccessIterator last,
StrictWeakOrdering comp,
Distance*)
{
const Distance n = last - first; Distance parent = ;
for (Distance child = ; child < n; ++child) {
if (comp(first[parent], first[child]))
return false;
if ((child & ) == )
++parent;
}
return true;
} template <class RandomAccessIterator, class StrictWeakOrdering>
inline bool is_heap(RandomAccessIterator first, RandomAccessIterator last,
StrictWeakOrdering comp)
{
return __is_heap(first, last, comp, distance_type(first));
} template <class ForwardIterator>
bool is_sorted(ForwardIterator first, ForwardIterator last)
{
if (first == last)
return true; ForwardIterator next = first;
for (++next; next != last; first = next, ++next) {
if (*next < *first)
return false;
} return true;
} template <class ForwardIterator, class StrictWeakOrdering>
bool is_sorted(ForwardIterator first, ForwardIterator last,
StrictWeakOrdering comp)
{
if (first == last)
return true; ForwardIterator next = first;
for (++next; next != last; first = next, ++next) {
if (comp(*next, *first))
return false;
} return true;
} #if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma reset woff 1209
#endif __STL_END_NAMESPACE #endif /* __SGI_STL_INTERNAL_ALGO_H */ // Local Variables:
// mode:C++
// End:
stl_algo.h的更多相关文章
- STL源代码剖析——STL算法stl_algo.h
前言 在前面的博文中剖析了STL的数值算法.基本算法和set集合算法.本文剖析STL其它的算法,比如排序算法.合并算法.查找算法等等.在剖析的时候.会针对函数给出一些样例说明函数的使用.源代码出自SG ...
- STL algorithm源代码:stl_algo.h
<span style="font-size:18px;">// Algorithm implementation -*- C++ -*- // Copyright ( ...
- STL 源代码剖析 算法 stl_algo.h -- lower_bound
本文为senlie原创,转载请保留此地址:http://blog.csdn.net/zhengsenlie lower_bound(应用于有序区间) ------------------------- ...
- STL 源代码剖析 算法 stl_algo.h -- random_shuffle
本文为senlie原创,转载请保留此地址:http://blog.csdn.net/zhengsenlie random_shuffle ------------------------------- ...
- STL 源代码剖析 算法 stl_algo.h -- merge sort
本文为senlie原创.转载请保留此地址:http://blog.csdn.net/zhengsenlie merge sort ----------------------------------- ...
- STL 源代码剖析 算法 stl_algo.h -- partition
本文为senlie原创,转载请保留此地址:http://blog.csdn.net/zhengsenlie partition ------------------------------------ ...
- STL 源代码剖析 算法 stl_algo.h -- equal_range
本文为senlie原创,转载请保留此地址:http://blog.csdn.net/zhengsenlie equal_range(应用于有序区间) ------------------------- ...
- STL 源代码分析 算法 stl_algo.h -- includes
本文senlie原,转载请保留此地址:http://blog.csdn.net/zhengsenlie includes(应用于有序区间) ------------------------------ ...
- STL 源代码分析 算法 stl_algo.h -- merge
本文senlie原版的,转载请保留此地址:http://blog.csdn.net/zhengsenlie merge (应用于有序区间) ------------------------------ ...
随机推荐
- 简单springmvc在Eclipse的Tomcat上部署404error,直接在Tomcat上部署可以访问
在Eclipse工程下的.setting文件夹的org.eclipse.wst.common.component这个文件,如下则可以访问: <?xml version="1.0&quo ...
- driver.close()和driver.quit()
driver.close()关闭当前窗口 driver.quit()退出驱动关闭所有窗口 from selenium import webdriver from time import sleep d ...
- JavaWeb:Tomcat服务器的安装与配置
Tomcat服务器的安装与配置 安装 输入网址进入Tomcat的官网 在左边导航栏选择对应下载的版本 下载安装包形式 下载并解压到我们 ...
- 字典树 trie树 学习
一字典树 字典树,又称单词查找树,Trie树,是一种树形结构,哈希表的一个变种 二.性质 根节点不包含字符,除根节点以外的每一个节点都只包含一个字符: 从根节点到某一节点,路径上经过的字符串连接起 ...
- springboot-数据库
Spring-data-jpa jpa定义了一系列持久化的标准,比如hibernate就实现了这一标准. Springboot 的jpa就是hibernate的整合. 在pom文件中增加配置: < ...
- Linux环境下的图形系统和AMD R600显卡编程(1)——Linux环境下的图形系统简介
转:https://www.cnblogs.com/shoemaker/p/linux_graphics01.html Linux/Unix环境下最早的图形系统是Xorg图形系统,Xorg图形系统通过 ...
- 快乐学习 Ionic Framework+PhoneGap 手册1-5 {IO开关}
当然,即使努力了也没做成,至少你也有收获,因为你知道自己以后可以避开这个坑. 这是一个"IO"开关,请看效果图和代码,下一节,说明,数据交换 Index HTML Code < ...
- DB2日期及时间的使用
1.DB2中日期.时间寄存器的使用 --取日期 SELECT CURRENT DATE FROM sysibm.sysdummy1; --返回数据类型:DATE --结果集(YYYY-MM-DD): ...
- 吴恩达深度学习笔记(十一)—— dropout正则化
主要内容: 一.dropout正则化的思想 二.dropout算法流程 三.dropout的优缺点 一.dropout正则化的思想 在神经网络中,dropout是一种“玄学”的正则化方法,以减少过拟合 ...
- Maven配置一键部署远程Tomcat
1. 首先需要配置远程Tomcat的访问权限(设置访问用户名密码) http://www.cnblogs.com/liuchao102/p/5519345.html 2. 配置pom.xml 添加to ...