HDU4940 Destroy Transportation system(有上下界的最大流)
Let’s represent his enemy’s transportation system as a simple directed graph G with n nodes and m edges. Each node is a city and each directed edge is a directed road. Each edge from node u to node v is associated with two values D and B, D is the cost to destroy/remove such edge, B is the cost to build an undirected edge between u and v.
His enemy can deliver supplies from city u to city v if and only if there is a directed path from u to v. At first they can deliver supplies from any city to any other cities. So the graph is a strongly-connected graph.
He will choose a non-empty proper subset of cities, let’s denote this set as S. Let’s denote the complement set of S as T. He will command his soldiers to destroy all the edges (u, v) that u belongs to set S and v belongs to set T.
To destroy an edge, he must pay the related cost D. The total cost he will pay is X. You can use this formula to calculate X:
After that, all the edges from S to T are destroyed. In order to deliver huge number of supplies from S to T, his enemy will change all the remained directed edges (u, v) that u belongs to set T and v belongs to set S into undirected edges. (Surely, those edges exist because the original graph is strongly-connected)
To change an edge, they must remove the original directed edge at first, whose cost is D, then they have to build a new undirected edge, whose cost is B. The total cost they will pay is Y. You can use this formula to calculate Y:
At last, if Y>=X, Tom will achieve his goal. But Tom is so lazy that he is unwilling to take a cup of time to choose a set S to make Y>=X, he hope to choose set S randomly! So he asks you if there is a set S, such that Y<X. If such set exists, he will feel unhappy, because he must choose set S carefully, otherwise he will become very happy.
The first line contains an integer T(T<=200), indicates the number of cases.
For each test case, the first line has two numbers n and m.
Next m lines describe each edge. Each line has four numbers u, v, D, B.
(2=<n<=200, 2=<m<=5000, 1=<u, v<=n, 0=<D, B<=100000)
The meaning of all characters are described above. It is guaranteed that the input graph is strongly-connected.
同上一道题,不过在我不知道这题要用最大流来做的情况下我是不会想到的:
关键是要构造出不等式,而且把不等式对应到可行流。
#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=4;
const int inf=;
int Laxt[maxn],Next[maxn],To[maxn],Cap[maxn],cnt;
int dis[maxn],nd[maxn],S,T,num,ans,q[maxn],qnum[maxn],top;
void init()
{
cnt=;ans=num=top=;
memset(Laxt,,sizeof(Laxt));
memset(dis,,sizeof(dis));
memset(nd,,sizeof(nd));
}
int add(int u,int v,int c)
{
Next[++cnt]=Laxt[u];
Laxt[u]=cnt;
To[cnt]=v;
Cap[cnt]=c; Next[++cnt]=Laxt[v];
Laxt[v]=cnt;
To[cnt]=u;
Cap[cnt]=;
}
int sap(int u,int flow)
{
if(u==T||flow==) return flow;
int delta=,tmp;
for(int i=Laxt[u];i;i=Next[i]){
int v=To[i];
if(dis[v]+==dis[u]&&Cap[i]>){
tmp=sap(v,min(Cap[i],flow-delta));
delta+=tmp;
Cap[i]-=tmp;
Cap[i^]+=tmp;
if(flow==delta||dis[]>=T) return delta;
}
}
nd[dis[u]]--;
if(nd[dis[u]]==) dis[]=T;
nd[++dis[u]]++;
return delta;
}
int main()
{
int Case,n,i,j,m,u,v,x,y,k=;
scanf("%d",&Case);
while(Case--){
init();
scanf("%d%d",&n,&m);
S=;T=n+;
for(i=;i<=m;i++){
scanf("%d%d%d%d",&u,&v,&x,&y);
u++;v++;num+=x;
add(u,v,y);
q[++top]=cnt;
qnum[top]=x;
add(S,v,x);
add(u,T,x);
}
while(dis[S]<T) {
ans+=sap(S,inf);
}
printf("Case #%d: ",++k);
if(num!=ans) printf("unhappy\n");
else printf("happy\n");
}
return ;
}
(希望多遇到几个这样的模型,然后好好理解一下)
HDU4940 Destroy Transportation system(有上下界的最大流)的更多相关文章
- HDU Destroy Transportation system(有上下界的可行流)
前几天正看着网络流,也正研究着一个有上下界的网络流的问题,查看了很多博客,觉得下面这篇概括的还是相当精确的: http://blog.csdn.net/leolin_/article/details/ ...
- hdu4940 Destroy Transportation system(2014多校联合第七场)
题意很容易转化到这样的问题:在一个强连通的有向图D中是否存在这样的集合划分S + T = D,从S到T集合的边权大于从T到S集合的边权. 即D(i, j) > B(j, i) + D(j, i ...
- hdu 4940 Destroy Transportation system (无源汇上下界可行流)
Destroy Transportation system Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 ...
- hdu 4940 Destroy Transportation system(水过)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4940 Destroy Transportation system Time Limit: 2000/1 ...
- ZOJ 2314 带上下界的可行流
对于无源汇问题,方法有两种. 1 从边的角度来处理. 新建超级源汇, 对于每一条有下界的边,x->y, 建立有向边 超级源->y ,容量为x->y下界,建立有向边 x-> 超级 ...
- 【UVALive - 5131】Chips Challenge(上下界循环费用流)
Description A prominent microprocessor company has enlisted your help to lay out some interchangeabl ...
- SGU 176.Flow construction (有上下界的最大流)
时间限制:0.5s 空间限制:4M 题意: 有一个由管道组成的网络,有n个节点(n不大于100),1号节点可以制造原料,最后汇集到n号节点.原料通过管道运输.其中有一些节点有管道连接,这些管道都有着最 ...
- zoj3229 Shoot the Bullet(有源汇有上下界的最大流)
题意: 一个屌丝给m个女神拍照,计划拍照n天,每一天屌丝给给定的C个女神拍照,每天拍照数不能超过D张,而且给每个女神i拍照有数量限制[Li,Ri],对于每个女神n天的拍照总和不能少于Gi,如果有解求屌 ...
- zoj 3229 有源汇有上下界的最大流模板题
/*坑啊,pe的程序在zoj上原来是wa. 题目大意:一个屌丝给m个女神拍照.计划拍照n天,每一天屌丝最多个C个女神拍照,每天拍照数不能超过D张,并且给每一个女神i拍照有数量限制[Li,Ri], 对于 ...
随机推荐
- python之路:进击的小白
1.hello world print("hello world") 2.变量定义的规则 变量名只能是 字母.数字或下划线的任意组合 变量名的第一个字符不能是数字 以下关键字不能声 ...
- 单口双线PC连接转换器 手机电脑耳机转接线
看着标题是不是很绕, 其实这个需求我相信不少人都有, 只是可能很少会想到. 手机换了一个又一个, 佩戴的耳机同样是一个又一个, 最别扭的是, 用手机的时候往往不用耳机, 不少童鞋都会选择把手机的耳机放 ...
- R中的数据重塑函数
1.去除重复数据 函数:duplicated(x, incomparables = FALSE, MARGIN = 1,fromLast = FALSE, ...),返回一个布尔值向量,重复数据的第一 ...
- box-flex兼容写法
box-flex布局在这几年发生了多次变化,可分为2009版.2011版以及2013版, 区分: display:box(inline-box), box-{*}的格式为2009版 display:b ...
- 在unity 中,使用http请求,下载文件到可读可写路径
在这里我用了一个线程池,线程池参数接收一个带有object参数的,无返回值的委托 ,下载用到的核心代码,网上拷贝的,他的核心就是发起一个web请求,然后得到请求的响应,读取响应的流 剩下的都是常见的I ...
- INSPIRED启示录 读书笔记 - 第28章 创业型公司的产品管理
产品设计方式 第一步:创业初期只设三个职位,产品经理.交互设计师和原型开发人员(职位可以兼任) 第二步:快速展开产品设计(高保真原型),邀请真实的目标用户验证产品原型,迭代修改 第三步:随着迭代的深入 ...
- CentOS 7防火墙设置开放80端口
在CentOS 6.x版本中,默认使用的是iptables防火墙.到了CentOS 7.x版本,默认防火墙变成了firewalld.本篇通过使用firewalld开启.关闭 HTTP(80)端口,来讲 ...
- Linux挂载第二块硬盘操作方法
远程SSH登录上Centos服务器后,进行如下操作 提醒:挂载操作会清空数据,请确认挂载盘无数据或者未使用 第一步:列出所有已挂载磁盘 命令: disk -h [root@gluster_node1 ...
- vi编辑器快捷键使用详解
文本编辑器是所有计算机系统中最常用的一种工具.UNIX下的编辑器有ex,sed和vi等,其中,使用最为广泛的是vi,而vi命令繁多,论坛里好像这方面的总结不多,以下稍做总结,以资共享!渴望更正和补充! ...
- 常见Web安全漏洞
1.web安全常见攻击手段 xss sql注入 防盗链 csrf 上传漏洞 2. 信息加密与漏洞扫描 对称加密 非对称加密 3. 互联网API接口安全设计 4. 网站安全漏洞扫描与 ...