二项分布 , 多项分布, 以及与之对应的beta分布和狄利克雷分布
1. 二项分布与beta分布对应
2. 多项分布与狄利克雷分布对应
3. 二项分布是什么?n次bernuli试验服从 二项分布
二项分布是N次重复bernuli试验结果的分布。 bernuli实验是什么?做一次抛硬币实验,该试验结果只有2种情况,x= 1, 表示正面。 x=0,表示反面。 bernuli(x|p) = p^x*(1-p)^(1-x)。如果了n次, 我们只要数一下正面的次数n_x,即可得到反面的次数n-n_x。 n次重复的nernuli试验: n-bernuli(n_x|N,p) = p^n_x*(1-p)^(n-n_x), (忽略前边的组合系数)
2.13. 多项分布是什么?是k维的贝努力试验。n次抛骰子试验服从多项试验。
multi(n_x|p,N) =pi(p^n_k), 每个骰子上的编号都是一个贝努力试验结果。 n_x, p都是一个向量。 表示,比如我们想知道编号1出现2ci, 标号2出现5次, 3出现2次,4出现4次, 5出现3次,6出现2次的概率: n_x = [2,5,2,4,3,3, 对应的概率分别是p=[0,1, 0,3 0.1, 0..2, 0.15, 0.15]
4. 贝叶斯学派: 贝叶斯全概率公式: P(u|x) = P(X|u)*P(u). 贝叶斯公式右边的P(X|u)也称为似然分布, 先验分布是P(u)
先验和后验是同一分布时,我们称之为共轭。如果选用beta分布。 对一个X为2值变量来说, P(X|u) 服从二项分布P(X|u,N) = u^x* (1-u)*(N-x). 如果先验分布也有类似的指数分布,那样的话后延分布也
beta分布一般用来表示二项分布的先验分布。 因为beta分布与二项分布的类似。 也
二项分布 , 多项分布, 以及与之对应的beta分布和狄利克雷分布的更多相关文章
- 伯努利分布、二项分布、多项分布、Beta分布、Dirichlet分布
1. 伯努利分布 伯努利分布(Bernoulli distribution)又名两点分布或0-1分布,介绍伯努利分布前首先需要引入伯努利试验(Bernoulli trial). 伯努利试验是只有两种可 ...
- LDA学习之beta分布和Dirichlet分布
---恢复内容开始--- 今天学习LDA主题模型,看到Beta分布和Dirichlet分布一脸的茫然,这俩玩意怎么来的,再网上查阅了很多资料,当做读书笔记记下来: 先来几个名词: 共轭先验: 在贝叶斯 ...
- (转)Gamma分布,Beta分布,Multinomial多项式分布,Dirichlet狄利克雷分布
1. Gamma函数 首先我们可以看一下Gamma函数的定义: Gamma的重要性质包括下面几条: 1. 递推公式: 2. 对于正整数n, 有 因此可以说Gamma函数是阶乘的推广. 3. 4. ...
- 二项分布 多项分布 伽马函数 Beta分布
http://blog.csdn.net/shuimu12345678/article/details/30773929 0-1分布: 在一次试验中,要么为0要么为1的分布,叫0-1分布. 二项分布: ...
- Beta分布和Dirichlet分布
在<Gamma函数是如何被发现的?>里证明了\begin{align*} B(m, n) = \int_0^1 x^{m-1} (1-x)^{n-1} \text{d} x = \frac ...
- NLP点滴——文本相似度
[TOC] 前言 在自然语言处理过程中,经常会涉及到如何度量两个文本之间的相似性,我们都知道文本是一种高维的语义空间,如何对其进行抽象分解,从而能够站在数学角度去量化其相似性.而有了文本之间相似性的度 ...
- 自然语言处理之LDA主题模型
1.LDA概述 在机器学习领域,LDA是两个常用模型的简称:线性判别分析(Linear Discriminant Analysis)和 隐含狄利克雷分布(Latent Dirichlet Alloca ...
- 理解 LDA 主题模型
前言 gamma函数 0 整体把握LDA 1 gamma函数 beta分布 1 beta分布 2 Beta-Binomial 共轭 3 共轭先验分布 4 从beta分布推广到Dirichlet 分布 ...
- 通俗理解LDA主题模型(boss)
0 前言 看完前面几篇简单的文章后,思路还是不清晰了,但是稍微理解了LDA,下面@Hcy开始详细进入boss篇.其中文章可以分为下述5个步骤: 一个函数:gamma函数 四个分布:二项分布.多项分布. ...
随机推荐
- Windows下Python安装lxml
1.下载easy_install的安装包,下载地址:https://pypi.Python.org/pypi/setuptools 我是Windows7,所以直接下载Windows(Simplify) ...
- LG2120 [ZJOI2007]仓库建设
题意 L公司有N个工厂,由高到底分布在一座山上. 工厂1在山顶,工厂N在山脚. 由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用. 突然有一天,L公司的总裁L先生接到 ...
- 转 OpenFaaS 介绍
来源: https://thenewstack.io/openfaas-put-serverless-function-container/?utm_source=tuicool&utm_me ...
- Oracle视图编译错误解决办法
因为新搭的环境,数据库是从另一个现成的环境导过来的,直接后台用exp和imp命令操作.但是新环境的Oracle数据库有问题,一些视图创建不了,导致用到这些视图的视图和存储过程也编译不了.后来手工重新编 ...
- Linux 简单字符设备驱动
1.hello_drv.c (1) 初始化和卸载函数的格式是固定的,函数名自定义 (2) printk是内核的打印函数,用法与printf一致 (3) MODULE_LICENSE:模块代码支持开源协 ...
- Linux yum操作时出现Error: xz compression not available
yum升级PHP版本的时候出现这个问题 由于CentOS6的系统安装了epel-release-latest-7.noarch.rpm 导致在使用yum命令时出现Error: xz compressi ...
- Linux常用命令(个人使用频率较高)
1,日志查看 tail(cat) -f|grep ERROR(任意字符) filepath (任意行数) -f|grep ERROR(任意字符) filepath 2,查看目录&授权 file ...
- linux下PS1命令提示符设置
linux下PS1命令提示符设置 在此文件最后一行添加:vim /etc/profileexport PS1='[\u@\h \W]\$ ' #这里必须用单引号. \d :代表日期,格式为 ...
- java 随意控制控件的位置
package chat1; import java.awt.*; import java.awt.event.*; import javax.swing.*; public class chat1{ ...
- POJ1325(最小顶点覆盖)
Machine Schedule Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 14429 Accepted: 6153 ...