题目

桌面上摆放着 \(m\) 种魔术卡,共 \(n\) 张,第 \(i\) 种魔术卡数量为 \(a_i\),魔术卡顺次摆放,形成一个长度为 \(n\) 的魔术序列,

在魔术序列中,若两张相邻魔术卡的种类相同,则它们被称为一个魔术对。

两个魔术序列本质不同,当且仅当存在至少一个位置,使得两个魔术序列这个位置上的魔术卡的种类不同,

求本质不同的恰好包含 \(k\) 个魔术对的魔术序列的数量,答案对 \(998244353\) 取模。


分析

考虑给种类相同的也存在次序,最后再除以\(a_i!\),

对于单个种类至少有\(k\)个魔术对的方案就是

\[C(a_i,k)\frac{(a_i-1)!}{(a_i-k-1)!}
\]

就是先选择\(k\)个成为魔术对,再一个一个插入,

由于剩下的\(n-2*k\)个不确定是否产生魔术对,所以是至少

上面这个式子直接表示成\(m\)个多项式,用分治NTT

那恰好就不好做了,考虑容斥,

\[ans=\sum_{i=k}^n(-1)^{i-k}C(i,k)f[i](n-i)!
\]

\((n-i)!\)是因为把剩下的任意排


代码

#include <cstdio>
#include <cctype>
#include <cmath>
#include <cstring>
#include <algorithm>
#define rr register
#define mem(f,n) memset(f,0,sizeof(int)*(n))
#define cpy(f,g,n) memcpy(f,g,sizeof(int)*(n))
using namespace std;
const int mod=998244353,inv3=332748118,N=100011;
typedef long long lll; typedef unsigned long long ull;
int n,m,Gmi[31],Imi[31],len[15],fac[N],inv[N],ff[15][N<<2],a[N],v[15],t=1,ans,k;
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline void print(int ans){
if (ans>9) print(ans/10);
putchar(ans%10+48);
}
inline signed address(){
for (rr int i=0;i<15;++i)
if (!v[i]) return i;
return -1;
}
inline signed ksm(int x,int y){
rr int ans=1;
for (;y;y>>=1,x=1ll*x*x%mod)
if (y&1) ans=1ll*ans*x%mod;
return ans;
}
inline signed C(int n,int m){return 1ll*fac[n]*inv[m]%mod*inv[n-m]%mod;}
namespace Theoretic{
int rev[N<<2],LAST; ull Wt[N<<2],F[N<<2];
inline void Pro(int n){
if (LAST==n) return; LAST=n,Wt[0]=1;
for (rr int i=0;i<n;++i)
rev[i]=(rev[i>>1]>>1)|((i&1)?n>>1:0);
}
inline void NTT(int *f,int n,int op){
Pro(n);
for (rr int i=0;i<n;++i) F[i]=f[rev[i]];
for (rr int o=1,len=1;len<n;++o,len<<=1){
rr int W=(op==1)?Gmi[o]:Imi[o];
for (rr int j=1;j<len;++j) Wt[j]=Wt[j-1]*W%mod;
for (rr int i=0;i<n;i+=len+len)
for (rr int j=0;j<len;++j){
rr int t=Wt[j]*F[i|j|len]%mod;
F[i|j|len]=F[i|j]+mod-t,F[i|j]+=t;
}
if (o==10) for (rr int j=0;j<n;++j) F[j]%=mod;
}
if (op==-1){
rr int invn=ksm(n,mod-2);
for (rr int i=0;i<n;++i) F[i]=F[i]%mod*invn%mod;
}else for (rr int i=0;i<n;++i) F[i]%=mod;
for (rr int i=0;i<n;++i) f[i]=F[i];
}
inline void Cb(int *f,int *g,int n){
for (rr int i=0;i<n;++i) f[i]=1ll*f[i]*g[i]%mod;
}
inline signed CDQ_NTT(int l,int r){
if (l==r){
rr int now=address();
len[now]=a[l],v[now]=1;
for (rr int i=0;i<len[now];++i)
ff[now][i]=1ll*C(a[l],i)*C(a[l]-1,i)%mod*fac[i]%mod;
return now;
}
rr int mid=(l+r)>>1,L;
rr int lef=CDQ_NTT(l,mid),rig=CDQ_NTT(mid+1,r);
for (L=1;L<len[lef]+len[rig];L<<=1);
NTT(ff[lef],L,1),NTT(ff[rig],L,1),Cb(ff[lef],ff[rig],L),
mem(ff[rig],L),len[lef]+=len[rig],len[rig]=v[rig]=0,NTT(ff[lef],L,-1);
return lef;
}
}
inline void GmiImi(){
for (rr int i=0;i<31;++i) Gmi[i]=ksm(3,(mod-1)/(1<<i));
for (rr int i=0;i<31;++i) Imi[i]=ksm(inv3,(mod-1)/(1<<i));
}
signed main(){
m=iut(),n=iut(),k=iut(),GmiImi(),inv[0]=inv[1]=fac[0]=fac[1]=1;
for (rr int i=2;i<=n;++i) inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
for (rr int i=2;i<=n;++i) fac[i]=1ll*fac[i-1]*i%mod,inv[i]=1ll*inv[i]*inv[i-1]%mod;
for (rr int i=1;i<=m;++i) a[i]=iut(),t=1ll*t*inv[a[i]]%mod;
rr int now=Theoretic::CDQ_NTT(1,m);
for (rr int i=k;i<=n;++i)
if ((i-k)&1) ans=(ans+mod-1ll*ff[now][i]*C(i,k)%mod*fac[n-i]%mod)%mod;
else ans=(ans+1ll*ff[now][i]*C(i,k)%mod*fac[n-i]%mod)%mod;
return !printf("%lld",1ll*ans*t%mod);
}

#分治NTT,容斥定理,排列组合#LOJ 6503 「雅礼集训 2018 Day4」Magic的更多相关文章

  1. Loj #6503. 「雅礼集训 2018 Day4」Magic

    Loj #6503. 「雅礼集训 2018 Day4」Magic 题目描述 前进!前进!不择手段地前进!--托马斯 · 维德 魔法纪元元年. 1453 年 5 月 3 日 16 时,高维碎片接触地球. ...

  2. LOJ#6503.「雅礼集训 2018 Day4」Magic[容斥+NTT+启发式合并]

    题意 \(n\) 张卡牌 \(m\) 种颜色,询问有多少种本质不同的序列满足相邻颜色相同的位置数量等于 \(k\). 分析 首先本质不同不好直接处理,可以将同种颜色的卡牌看作是不相同的,求出答案后除以 ...

  3. 【loj#6503.】「雅礼集训 2018 Day4」Magic(生成函数+容斥)

    题面 传送门 题解 复杂度比较迷啊-- 以下以\(n\)表示颜色总数,\(m\)表示总的卡牌数 严格\(k\)对比较难算,我们考虑容斥 首先有\(i\)对就代表整个序列被分成了\(m-i\)块互不相同 ...

  4. LOJ6503. 「雅礼集训 2018 Day4」Magic(容斥原理+NTT)

    题目链接 https://loj.ac/problem/6503 题解 题中要求本质不同的序列数量,不太好搞.我们考虑给相同颜色的牌加上编号,这样所有牌都不相同.那么如果我们求出了答案,只需要将答案除 ...

  5. Loj#6503-「雅礼集训 2018 Day4」Magic【分治NTT】

    正题 题目链接:https://loj.ac/p/6503 题目大意 \(n\)张卡\(m\)种,第\(i\)种卡有\(a_i\)张,求所有排列中有\(k\)对相邻且相同的卡牌. \(1\leq n\ ...

  6. [loj 6496]「雅礼集训 2018 Day1」仙人掌

    传送门 Description 给出一张 \(n\)个点 \(m\)条边的无向连通图,其中每条边至多属于一个简单环,保证没有自环,可能有重边.你需要为其中每条边定向,其中第 \(i\)个点的出度不能超 ...

  7. 【线段树分治 01背包】loj#6515. 「雅礼集训 2018 Day10」贪玩蓝月

    考试时候怎么就是没想到线段树分治呢? 题目描述 <贪玩蓝月>是目前最火爆的网页游戏.在游戏中每个角色都有若干装备,每件装备有一个特征值 $w$ 和一个战斗力 $v$ .在每种特定的情况下, ...

  8. LOJ #6509. 「雅礼集训 2018 Day7」C

    神仙题 LOJ #6509 题意 给定一棵树,点权为0/1,每次随机一个点(可能和之前所在点相同)走到该点并将其点权异或上1 求期望的移动距离使得所有点点权相同 题解 根本不会解方程 容易发现如果一个 ...

  9. loj 6037 「雅礼集训 2017 Day4」猜数列 - 动态规划

    题目传送门 传送门 题目大意 有一个位置数列,给定$n$条线索,每条线索从某一个位置开始,一直向左或者向右走,每遇到一个还没有在线索中出现的数就将它加入线索,问最小的可能的数列长度. 依次从左到右考虑 ...

  10. Loj 6036 「雅礼集训 2017 Day4」编码 - 2-sat

    题目传送门 唯一的传送门 题目大意 给定$n$个串,每个串只包含 ' .问是否可能任意两个不同的串不满足一个是另一个的前缀. 2-sat的是显然的. 枚举每个通配符填0还是1,然后插入Trie树. 对 ...

随机推荐

  1. win32-封装BeginPaint

    Graphics* StartPaint(HWND win, HDC* hdc, PAINTSTRUCT* ps) { *hdc = BeginPaint(win, ps); return new G ...

  2. 双层循环练习,pass_break_continue,和for循环---day06

    1.双层循环练习 2.pass_break_continue pass:在代码块中无代码可写时,可用pass占位 break:终止当前循环,只能应用在循环里 continue:跳过当前循环,从下一次开 ...

  3. go-ini解析ini文件

    文档 https://github.com/go-ini/ini https://ini.unknwon.io/docs/intro/getting_started go get -u gopkg.i ...

  4. rpm的一些命令

    rpm -q xx #查询当前的包是否安装 rpm -qi xx # 查询当前包的详细信息 rpm -qpi 包文件路径 # 没装之前先查看包的信息 rpm -qpl 包文件路径 # 预计装上后会在系 ...

  5. java基础集合类之ArrayList---01

    集合类之ArrayList ArrayList<E>: 1.可调整大小的数组实现 2.<E>:是一种特殊的数据类型,泛型 3.在出现E的地方我们使用引用数据类型替换即可:Arr ...

  6. java基础字符串---02

    String 概述 String类在java.lang包下,所以使用的时候不需要导包 String类代表字符串,java程序中的所有字符串文字(例如"abc")都被实现为此类的实例 ...

  7. SQL Server 连接数据库报错 (ObjectExplorer)

    报错信息 无法访问数据库 ReportServer. (ObjectExplorer) 具体错误信息: 程序位置: 在 Microsoft.SqlServer.Management.UI.VSInte ...

  8. 【华为机试ACM基础#02】从单向链表中删除指定值的节点、输出单向链表中倒数第k个节点(熟悉链表的输入方式)

    从单向链表中删除指定值的节点 输入一个单向链表和一个节点的值,从单向链表中删除等于该值的节点,删除后如果链表中无节点则返回空指针. 链表的值不能重复. 构造过程,例如输入一行数据为: 6 2 1 2 ...

  9. 第128篇:浏览器存储(cookie、webStorage、 IndexedDB)

    好家伙,本篇为<JS高级程序设计>第二五章"浏览器存储"学习笔记 我们先来讲个故事 一个"薅羊毛"的故事 (qq.com) 概括一下,就是 有个人通 ...

  10. 【Azure Redis 缓存】Redis连接无法建立问题的排查(注:Azure Redis集成在VNET中)

    问题描述 在Azure App Service中部署的应用,需要连接到Redis中,目标Redis已经集成了虚拟网络(VNET)并且在Redis的网络防火墙中已经添加App Service的出站IP地 ...