NC16655 [NOIP2005]过河
题目
题目描述
在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧。在桥上有一些石子,青蛙很讨厌踩在这些石子上。由于桥的长度和青蛙一次跳过的距离都是正整数,我们可以把独木桥上青蛙可能到达的点看成数轴上的一串整点:0,1,……,L(其中L是桥的长度)。坐标为0的点表示桥的起点,坐标为L的点表示桥的终点。青蛙从桥的起点开始,不停的向终点方向跳跃。一次跳跃的距离是S到T之间的任意正整数(包括S,T)。当青蛙跳到或跳过坐标为L的点时,就算青蛙已经跳出了独木桥。
题目给出独木桥的长度L,青蛙跳跃的距离范围S,T,桥上石子的位置。你的任务是确定青蛙要想过河,最少需要踩到的石子数。
输入描述
第一行有一个正整数 \(L(1\leq L\leq 10^9)\),表示独木桥的长度。
第二行有三个正整数S,T,M,分别表示青蛙一次跳跃的最小距离,最大距离,及桥上石子的个数,其中1<=S<=T<=10,1<=M<=100。
第三行有M个不同的正整数分别表示这M个石子在数轴上的位置(数据保证桥的起点和终点处没有石子)。
所有相邻的整数之间用一个空格隔开。
输出描述
只包括一个整数,表示青蛙过河最少需要踩到的石子数。
示例1
输入
10
2 3 5
2 3 5 6 7
输出
2
备注
对于30%的数据,L<=10000;对于全部的数据,\(L\leq 10^9\) 。
题解
知识点:线性dp,数论。
显然线性dp,但发现数据范围很大,数组装不下。思路不可能是别的,那看一下数据上有没有能动手脚的地方。
注意到每次跳的格数是 \([s,t]\) ,而两者大小都小于等于 \(10\) ,并且石头数小于等于 \(100\) ,可以看出实际石头间隔区间可能很大,有很多空间被浪费。现在有两个方案:离散化,数据可优化。前者不可行,因为dp需要中间这些空位不能离散掉,考虑后者。
注意到有不定方程 \(ax + by = d\),其中 \(d\) 为总跳跃长度,\(a,b \in [s,t]\) ,\(x,y\) 为跳跃 \(a,b\) 的次数,只需要 \(gcd(a,b)|d\) 即可有解。而这道题的跳跃区间是 \([s,t]\) ,因此只要一个区间内有互质的两个数 \(a,b\) 即可保证任意 \(d\) 都有解。但还有一个额外条件 \(x,y\geq 0\) ,因此实际上不是所有 \(d > 0\) 都能被凑出来,但可以保证 \(d> ab\) 时一定能被合法的凑出来。最后可以枚举证明,\([1,10]\) 任意两个相邻的数都是互质的,我们可以找区间里最小的两个数作为 \(a,b\) 。因此当 \(s \neq t\) 时 ,总能使得任意 $d> st $ 被凑出来。
上面的结论告诉我们,实际上 \(d> st\) 的长度都可以被踩到,因此之后这些的位置其实都等价了没必要保留了,只需要保留 \(d \leq st\) 的即可 ,因此当两个石头跨度 \(> st\) 时,手动修改为 \(st\) 即可,其余的间距保留不变,这样就能dp了。
特判一下 \(s = t\) 的情况即可。
时间复杂度 \(O(m\log m + t(L+t))\)
空间复杂度 \(O(m + L)\)
代码
#include <bits/stdc++.h>
using namespace std;
int a[107], b[107], dp[10107];
bool vis[10107];
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int L;
cin >> L;
int s, t, m;
cin >> s >> t >> m;
for (int i = 1;i <= m;i++) cin >> a[i];
if (s == t) {
int ans = 0;
for (int i = 1;i <= m;i++)
if (a[i] % s == 0) ans++;
cout << ans << '\n';
return 0;
}
sort(a + 1, a + m + 1);
int eps = s * t;
for (int i = 1;i <= m;i++) {
b[i] = b[i - 1] + min(a[i] - a[i - 1], eps);///>=st的值一定都能取到,不如缩短成100
vis[b[i]] = 1;
}
L = b[m] + min(L - a[m], eps);
for (int i = 1;i < L + t;i++) {///可以越过L
dp[i] = 0x3f3f3f3f;
for (int j = s;j <= t;j++)
if (i >= j) dp[i] = min(dp[i], dp[i - j] + vis[i]);
}
int ans = 0x3f3f3f3f;
for (int i = L;i < L + t;i++) ans = min(ans, dp[i]);
cout << ans << '\n';
return 0;
}
NC16655 [NOIP2005]过河的更多相关文章
- [codevs1105][COJ0183][NOIP2005]过河
[codevs1105][COJ0183][NOIP2005]过河 试题描述 在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧.在桥上有一些石子,青蛙很讨厌踩在这些石子上.由于桥的长度和青 ...
- NOIP2005过河[DP 状态压缩]
题目描述 在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧.在桥上有一些石子,青蛙很讨厌踩在这些石子上.由于桥的长度和青蛙一次跳过的距离都是正整数,我们可以把独木桥上青蛙可能到达的点看成数 ...
- NOIP2005 过河
过河 (river.pas/c/cpp) [问题描述] 在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧.在桥上有一些石子,青蛙很讨厌踩在这些石子上.由于桥的长度和青蛙一次跳过的距离都是正 ...
- [NOIP2005] 过河【Dp,思维题,缩点】
Online Judge:Luogu P1052 Label:Dp,思维题,缩点,数学 题目描述 在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧.在桥上有一些石子,青蛙很讨厌踩在这些石子 ...
- [vijos1002][NOIP2005]过河
Description 给定一条数轴,起点为0,数轴的某些整数点上有石子.每次可以移动的区间为[S,T].求当到达或超过L时,最少踩到的石子数. Input 输入的第一行有一个正整数L(1 <= ...
- NOIP2005过河(青蛙过河)
题目传送门 这道题主要是因为L长度最大可以为1e9 而石子却最多只有100个 这样就浪费了很多时间空间 所以我们压缩一波路径就可以了 剩余的就是枚举每个点以及i-y到i-x的dp了 这里要说一句为什么 ...
- NOIp2005 过河【dp+离散化】By cellur925
题目传送门 $30pts$ 状态和转移都比较好想:设$f[i]$表示跳到$i$位置,踩到的最小石子数.转移方程也很明了,为$f[i]$=$min${$f[i-j]$),,这个位置有石子时答案再加1,$ ...
- [题解+总结]NOIP动态规划大合集
1.前言 NOIP2003-2014动态规划题目大合集,有简单的也有难的(对于我这种动态规划盲当然存在难的),今天就把这些东西归纳一下,做一个比较全面的总结,方便对动态规划有一个更深的理解. 2.NO ...
- 【游记】NOIP 2017
时间:2017.11.11~2017.11.12 地点:广东省广州市第六中学 Day1 T1:看到题目,心想这种题目也能放在T1? 这个结论我之前遇到过至少3次,自己也简单证明过.初见是NOIP200 ...
- OI 刷题记录——每周更新
每周日更新 2016.05.29 UVa中国麻将(Chinese Mahjong,Uva 11210) UVa新汉诺塔问题(A Different Task,Uva 10795) NOIP2012同余 ...
随机推荐
- spring cloud 通过feign请求设置请求头
本文为博主原创,转载请注明出处: spring cloud 服务组件之间通过feign 的方式请求,会携带很少的基础类型的消息头参数,比如Content-Type等,但不会携带自定义或指定的请求头参数 ...
- springboot启动流程 (2) 组件扫描
SpringBoot的组件扫描是基于Spring @ComponentScan注解实现的,该注解使用basePackages和basePackageClasses配置扫描的包,如果未配置这两个参数,S ...
- APB Slave状态机设计
`timescale 1ns/1ps `define DATAWIDTH 32 `define ADDRWIDTH 8 `define IDLE 2'b00 `define W_ENABLE 2'b0 ...
- 04-Verilog基础_3
Module Module是verilog中的关键字,是对电路建模的最小单元.verilog中构建一个电路,对于一个硬件进行描述在module中进行. 半加器 module half_adder(S, ...
- linux-介绍
- [转帖]003、体系结构之TiKV持久化
TiKV架构和作用 数据持久化 分布式一致性 MVCC 分布式事务 Coprocessor coprocessor : 协同处理器. 可以将一些SQL计算交给TiKV处理.不需要将TiKV所有数据通过 ...
- [转帖]ERROR 2068 (HY000): LOAD DATA LOCAL INFILE file request rejected due to restrictions on access.
1.报错信息 ERROR 2068 (HY000): LOAD DATA LOCAL INFILE file request rejected due to restrictions on acces ...
- 【转帖】nginx变量使用方法详解-5
https://www.diewufeiyang.com/post/579.html 前面在 (二) 中我们已经了解到变量值容器的生命期是与请求绑定的,但是我当时有意避开了"请求" ...
- [转帖]windos的kafka设置账号密码
1.kafka配置文件 server.properties增加 listeners=SASL_PLAINTEXT://127.0.0.1:9092 advertised.listeners=SASL_ ...
- vue3动态组件的展示
需求描述 有些时候,我们需要做这样的处理. 点击A按钮的时候,出现组件A 点击B按钮的时候,出现组件B 点击C按钮的时候,出现组件C 这个时候,我们就可以使用动态组件了 动态组件 <templa ...