在上一篇通信协议碰到了多线程,阻塞、非阻塞、锁、信号量...,会碰到很多问题。因此我感觉很有必要研究多线程异步编程

首先以一个例子开始

我说明一下这个例子。

这是一个演示异步编程的例子。

  • 输入job [name],在一个同步的Main方法中,以一发即忘的方式调用异步方法StartJob()
  • 输入time,调用同步方法PrintCurrentTime()输出时间。
  • 输出都带上线程ID,便于观察。

    可以看到,主线程不会阻塞。主线程在同步方法中使用一发即忘的方式调用异步方法时,在异步方法中碰到阻塞时,主线程返回同步方法中继续执行。而异步方法在另一个线程中继续执行。

    程序如下
internal class Program
{
static void Main(string[] args)
{
while (true)
{
Console.WriteLine($"(Thread ID: {Thread.CurrentThread.ManagedThreadId}) Enter 'time' to get current time or 'job [name]' to start a job:");
string input = Console.ReadLine(); if (input.StartsWith("time"))
{
// 输出当前时间
PrintCurrentTime();
}
else if (input.StartsWith("job"))
{
// 启动一个异步任务,执行指定的工作
string[] parts = input.Split(new char[] { ' ' }, 2);
string jobName = parts.Length > 1 ? parts[1] : string.Empty;
StartJob(jobName);
}
else
{
Console.WriteLine("Invalid input. Please try again.");
}
}
} static void PrintCurrentTime()
{
Console.WriteLine($"(Thread ID: {Thread.CurrentThread.ManagedThreadId}) Current time: {DateTime.Now}");
} static async void StartJob(string jobName)
{
// 获取主线程的线程 ID
int mainThreadId = Thread.CurrentThread.ManagedThreadId; // 检查是否在主线程上
bool onMainThread = Thread.CurrentThread.ManagedThreadId == mainThreadId; Console.WriteLine($"(Thread ID: {Thread.CurrentThread.ManagedThreadId}) Starting job '{jobName}'. This will take 10 seconds..."); // 输出主线程上下文移动情况
Console.WriteLine($"(Thread ID: {Thread.CurrentThread.ManagedThreadId}) Main thread context moved to new thread: {(!onMainThread)}"); await Task.Delay(10000); // 模拟任务需要10秒钟完成 // 输出任务完成信息及上下文移动情况
Console.WriteLine($"(Thread ID: {Thread.CurrentThread.ManagedThreadId}) Job '{jobName}' completed. Main thread context moved to new thread: {(!onMainThread)}");
} }

上下文流转

一个方法从一个线程代码栈被切换,或者说被剪切到另一个线程代码栈上去,可以称为上下文流转

这对于理解异步编程是一个重要的点。

但由于上面的程序缺少必要变量,我需要在不同位置加几个变量,来展示上下文确实被移动了。

static async void StartJob(string jobName)
{
int mainThreadId = Thread.CurrentThread.ManagedThreadId;
// 检查是否在主线程上
bool onMainThread = Thread.CurrentThread.ManagedThreadId == mainThreadId;
...
}



可以看到onMainThread一直为False,这个变量从线程1移动到线程5

而且bool是值类型,在栈上面,这说明StartJob这段代码确实移动到线程5的栈上面去了。(每个线程都有一个调用栈)

使用VS调试窗口监视线程

想要再进一步,更清晰的话说明上下文流转的话,那就得监视这两个线程栈的内容了。万幸的是 vs提供了这个功能,调试 > 窗口 > 并行堆栈

  • 命中断点时,StartJob方法在主线程24876上

  • 10秒后再次命中,StartJob方法跑到了任务线程上。而主线程现在在Main函数的Console.ReadLine()那里阻塞

  • 代码阻塞与线程阻塞

    在上面的例子中我们引出两种现象,代码阻塞线程阻塞

    代码阻塞时,线程不一定阻塞,原线程没有阻塞,去执行别的代码了,而由新线程接手当前上下文和调用栈阻塞在这里,比如这里的await Task.Delay(10000)

    代码阻塞时线程也可能阻塞,比如lock(lockObj)Console.ReadLine()

    为了方便,我们姑且这样命名吧

    • 代码阻塞时,线程不阻塞称之为等待await
    • 代码阻塞时,线程也阻塞称之为阻塞block
  • 为什么有两个箭头

    这里为什么有线程24666和27548两个NET TP Worker(.NET Thread Pool (TP) Worker)?据chatGPT解释,Delay语句在线程池中找了一个线程去执行,一旦延迟时间到达,StartJob会在其中一个线程池线程上恢复执行。计时是一个线程,恢复上下文是另一个线程。Delay就代表了我们的那个耗时线程(不是异步方法所在线程)。

    既然有两个线程的联动,其中就出现了一些熟悉的东西。信号量Semaphore,一次性信号量的消耗TrySetResult,但详细过程我还不清楚。

    MSDN上的例子也是这样

以同步的方式进行异步编程

原来把异步方法的上下文移动到新线程N,保证主线程不阻塞(脱离主线程U)。然后N用第三个线程C执行耗时任务,最后把C结果给位于N中的上下文。

站在代码编写者的角度,不特意去看线程的话,就不会注意到异步方法的上下文从一个线程跑到另一个线程上去了。这就是所谓的以同步的方式进行异步编程。

那么线程N的执行就明晰了。先保存上下文,然后启用新线程C进行耗时任务,并阻塞。等C使用信号量或其他什么通知N时,N再根据C的结果继续执行。

可以这样总结

  • asyncawait是一个语法糖。
  • 以同步的方式进行异步编程的方式是使用语法糖,以同步的方式书写代码,然后编译成适当的异步的实现。

我列出几种可能的异步的实现

1. 异步状态机

  • 异步状态机是C#编译async语法糖的实现方式
  • 异步方法StartJob将会被编译成一个同步方法StartJobAsync和一个状态机StartJobAsyncMachine
  • 状态机流转上下文的方式是将新线程用到的变量提升为字段,储存于可被线程共享的进程堆中
  • MoveNext方法可以被不同线程执行,这是关键
点击查看代码
internal class Program
{
... internal static void StartJobAsync(string jobName)
{
StartJobAsyncMachine stateMachine = new StartJobAsyncMachine();
stateMachine.builder = AsyncVoidMethodBuilder.Create();
stateMachine.jobName = jobName;
stateMachine.state = -1;
stateMachine.builder.Start(ref stateMachine);
} public sealed class StartJobAsyncMachine : IAsyncStateMachine
{
public int state; public AsyncVoidMethodBuilder builder; private TaskAwaiter taskAwaiter; //形参会编译成public字段
public string jobName;
//被新线程使用的局部变量会编译成private字段
private bool onMainThread; private void MoveNext()
{
int num = state;
try
{
TaskAwaiter awaiter;
if (num != 0)
{
// 获取主线程的线程 ID
int mainThreadId = Thread.CurrentThread.ManagedThreadId; // 检查是否在主线程上
onMainThread = Thread.CurrentThread.ManagedThreadId == mainThreadId; Console.WriteLine($"(Thread ID: {Thread.CurrentThread.ManagedThreadId}) Starting job '{jobName}'. This will take 10 seconds..."); // 输出主线程上下文移动情况
Console.WriteLine($"(Thread ID: {Thread.CurrentThread.ManagedThreadId}) Main thread context moved to new thread: {(!onMainThread)}");
awaiter = Task.Delay(10000).GetAwaiter(); if (!awaiter.IsCompleted)
{
num = (state = 0);
taskAwaiter = awaiter;
StartJobAsyncMachine stateMachine = this;
builder.AwaitUnsafeOnCompleted(ref awaiter, ref stateMachine);
return;
}
}
else
{
awaiter = taskAwaiter;
taskAwaiter = default(TaskAwaiter);
num = (state = -1);
}
awaiter.GetResult();
// 输出任务完成信息及上下文移动情况
Console.WriteLine($"(Thread ID: {Thread.CurrentThread.ManagedThreadId}) Job '{jobName}' completed. Main thread context moved to new thread: {(!onMainThread)}");
}
catch (Exception exception)
{
state = -2;
builder.SetException(exception);
return;
}
state = -2;
builder.SetResult();
} void IAsyncStateMachine.MoveNext()
{
this.MoveNext();
} private void SetStateMachine(IAsyncStateMachine stateMachine)
{
} void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine)
{
this.SetStateMachine(stateMachine);
} }
}

StartJobAsync的调用和原方法等效。我在Main中在加一种指令jobMachine调用StartJobAsync。原来的改为job空格

else if (input.StartsWith("jobMachine "))
{
// 启动一个异步任务,执行指定的工作
string[] parts = input.Split(new char[] { ' ' }, 2);
string jobName = parts.Length > 1 ? parts[1] : string.Empty;
StartJobAsync(jobName);
}

2. 协程

这种方法到底叫协程还是异步迭代器,我不太分得清,但目的是能够达到的,我暂且就叫做协程好了。

虽然这种做法就像脱裤子放屁,因为协程最后也会编译成状态机。这个例子主要是为了演示直观。

理论上,C#中的异步/等待(async/await)语法并不是直接编译成协程的,而是由编译器生成状态机(state machine)来管理异步操作。但是,我们可以通过理解协程的工作原理以及C#异步/等待模型的特性,来描绘一种可能的编译结果。

这里我写了一个基于协程的异步的实现。效果和原来的等同。

  • 原理

    和状态机实现基本一样。对于每个async方法生成一个协程。而且在异步方法嵌套时,那么async方法内部的async方法在编译时就不需要开一个新线程了。要不然得多少线程。
internal class Program
{
static void Main(string[] args)
{
while (true)
{
...
else if (input.StartsWith("jobCorotine "))
{
// 启动一个异步任务,执行指定的工作
string[] parts = input.Split(new char[] { ' ' }, 2);
string jobName = parts.Length > 1 ? parts[1] : string.Empty;
StartJobAsync_2(jobName);
}
...
}
} #region 异步协程
static void StartJobAsync_2(string jobName)
{
StartJobAsyncCorotine startJobCorotine = new StartJobAsyncCorotine();
startJobCorotine.jobName = jobName;
var enumerator = startJobCorotine.DelayedOperations();
var iterator = enumerator.GetEnumerator();
bool next = false;
while (true)
{
next = iterator.MoveNext();
if (!iterator.Current.IsCompleted)
{
//异步方法中存在耗时任务,切换到新线程
break;
}
next = false;
}
if (next == false)
{
return;
}
//异步方法存在耗时任务,切换上下文到新线程
Task.Run(() =>
{
do
{
if (!iterator.Current.IsCompleted)
{
//创建耗时任务线程进行耗时任务
Task.Run(() =>
{
iterator.Current.GetResult();
}).Wait();
}
}
while (iterator.MoveNext());
});
} public sealed class StartJobAsyncCorotine
{
//形参因为需要运行时赋值,只能写成字段的形式
public string jobName; public int Count = 1; public IEnumerable<TaskAwaiter> DelayedOperations()
{
TaskAwaiter awaiter1; // 获取主线程的线程 ID
int mainThreadId = Thread.CurrentThread.ManagedThreadId; // 检查是否在主线程上
bool onMainThread = Thread.CurrentThread.ManagedThreadId == mainThreadId; Console.WriteLine($"(Thread ID: {Thread.CurrentThread.ManagedThreadId}) Starting job '{jobName}'. This will take 10 seconds..."); // 输出主线程上下文移动情况
Console.WriteLine($"(Thread ID: {Thread.CurrentThread.ManagedThreadId}) Main thread context moved to new thread: {(!onMainThread)}"); awaiter1 = Task.Delay(10000).GetAwaiter(); // 模拟任务需要10秒钟完成
//出去判断这是否是耗时任务以切换线程
yield return awaiter1; // 输出任务完成信息及上下文移动情况
Console.WriteLine($"(Thread ID: {Thread.CurrentThread.ManagedThreadId}) Job '{jobName}' completed. Main thread context moved to new thread: {(!onMainThread)}");
}
}
#endregion
}
  • 效果确实和原来一样

3. 闭包

这真不需要多说,通过闭包进行捕获上下文真的是太常见了,Ajax中用到吐

带返回值的上下文流转

StartJob是没有返回值的,假如我们需要一个返回值呢,比如一个bool,用于判断接下来的执行流程。

调用异步方法StartJob的同步方法Main之间存在着绝对的分界线——两个线程。同步方法不会被交给异步方法中的那个新线程,没法在同步方法中以同步的方式进行异步编程

唯一的一点看头是,至少Task还给我们留下了一个回调ContinueWith可用。但条件允许的话,何不把回调的内容写在异步方法内部呢?

C#异步编程是怎么回事(番外)的更多相关文章

  1. python之爬虫--番外篇(一)进程,线程的初步了解

    整理这番外篇的原因是希望能够让爬虫的朋友更加理解这块内容,因为爬虫爬取数据可能很简单,但是如何高效持久的爬,利用进程,线程,以及异步IO,其实很多人和我一样,故整理此系列番外篇 一.进程 程序并不能单 ...

  2. 从TCP到Socket,彻底理解网络编程是怎么回事

    进行程序开发的同学,无论Web前端开发.Web后端开发,还是搜索引擎和大数据,几乎所有的开发领域都会涉及到网络编程.比如我们进行Web服务端开发,除了Web协议本身依赖网络外,通常还需要连接数据库,而 ...

  3. #3使用html+css+js制作网页 番外篇 使用python flask 框架 (I)

    #3使用html+css+js制作网页 番外篇 使用python flask 框架(I 第一部) 0. 本系列教程 1. 准备 a.python b. flask c. flask 环境安装 d. f ...

  4. C#与C++的发展历程第三 - C#5.0异步编程巅峰

    系列文章目录 1. C#与C++的发展历程第一 - 由C#3.0起 2. C#与C++的发展历程第二 - C#4.0再接再厉 3. C#与C++的发展历程第三 - C#5.0异步编程的巅峰 C#5.0 ...

  5. 关于如何提高Web服务端并发效率的异步编程技术

    最近我研究技术的一个重点是java的多线程开发,在我早期学习java的时候,很多书上把java的多线程开发标榜为简单易用,这个简单易用是以C语言作为参照的,不过我也没有使用过C语言开发过多线程,我只知 ...

  6. 异步编程系列第05章 Await究竟做了什么?

    p { display: block; margin: 3px 0 0 0; } --> 写在前面 在学异步,有位园友推荐了<async in C#5.0>,没找到中文版,恰巧也想提 ...

  7. 异步编程系列06章 以Task为基础的异步模式(TAP)

    p { display: block; margin: 3px 0 0 0; } --> 写在前面 在学异步,有位园友推荐了<async in C#5.0>,没找到中文版,恰巧也想提 ...

  8. C#基础系列——异步编程初探:async和await

    前言:前面有篇从应用层面上面介绍了下多线程的几种用法,有博友就说到了async, await等新语法.确实,没有异步的多线程是单调的.乏味的,async和await是出现在C#5.0之后,它的出现给了 ...

  9. 给深度学习入门者的Python快速教程 - 番外篇之Python-OpenCV

    这次博客园的排版彻底残了..高清版请移步: https://zhuanlan.zhihu.com/p/24425116 本篇是前面两篇教程: 给深度学习入门者的Python快速教程 - 基础篇 给深度 ...

  10. 可视化(番外篇)——SWT总结

    本篇主要介绍如何在SWT下构建一个应用,如何安装SWT Designer并破解已进行SWT的可视化编程,Display以及Shell为何物.有何用,SWT中的常用组件.面板容器以及事件模型等. 1.可 ...

随机推荐

  1. PolarDB-X 全局Binlog解读之性能篇(上)

    简介: 本篇来介绍一下PolarDB-X全局binlog在性能方面的一些设计和思考,先通过几个实际的测试案例来展示全局binlog的性能情况,然后结合这些案例来深入讲解全局binlog关于优化的故事. ...

  2. 持续定义Saas模式云数据仓库+实时搜索

    简介: 本文由阿里云计算平台事业部 MaxCompute 产品经理孟硕为大家带来<持续定义Saas模式云数据仓库+实时搜索>的相关分享.以下是视频内容精华整理,主要包括以下三个部分:1.W ...

  3. [FAQ] Docker查询出所有的停止容器并移除

    $ docker rm `docker container ls -a --filter "status=exited" | awk '{print $1}' | sed '1,1 ...

  4. [GF] 与 Laravel 设计相近的 Golang 框架 GoFrame

    在 GoFrame (gogf/gf) 框架中有明确的代码分层设计,分别是 api, service, dao, model. model (结构模型)一般由工具自动生成,用于定义数据结构,只可被 m ...

  5. 修复 Debian 安装 dotnet 失败 depends on ca-certificates

    本文记录我在 Debian 安装 dotnet 失败,报错信息是 packages-microsoft-prod depends on ca-certificates; however: Packag ...

  6. 2019-4-29-Roslyn-将这个文件放在你的项目文件夹,无论哪个控制台项目都会输出林德熙是逗比...

    title author date CreateTime categories Roslyn 将这个文件放在你的项目文件夹,无论哪个控制台项目都会输出林德熙是逗比 lindexi 2019-4-29 ...

  7. element-ui表单重置函数 resetFields 无效解决

    由element-ui文档中能看到重置表单使用的是如下函数 this.$refs[formName].resetFields(); 但是有时使用它却可能会失效 解决: form-item中要加上pro ...

  8. SAP集成技术(八)成熟度模型

    成熟度模型的目的在于使用模型和标准来评估当前的集成能力,并确定必须建立哪些能力,以达到期望的成熟度级别. 成熟度级别描述了一个特定主题复杂性对于某种方法或模型的成熟度.基于定义的需求和标准的分类,得出 ...

  9. ansible(9)--ansible的yum模块

    1. yum模块 功能:管理软件包,需要确认被管理端为红帽系列的,并且需要被管理端配置好yum源. 主要的参数如下: 参数 说明 name 指定安装软件包名或软件包URL state 指定yum对应的 ...

  10. LVS负载均衡(2)-- NAT模型搭建实例

    目录 1. LVS NAT模型搭建 1.1 NAT模型网络规划 1.2 NAT模型访问流程 1.3 NAT模型配置步骤 1.3.1 ROUTER设备配置 1.3.2 后端nginx服务器配置 1.3. ...