tf入门-池化函数 tf.nn.max_pool 的介绍
转载自此大神 http://blog.csdn.net/mao_xiao_feng/article/details/53453926
max pooling是CNN当中的最大值池化操作,其实用法和卷积很类似
有些地方可以从卷积去参考【TensorFlow】tf.nn.conv2d是怎样实现卷积的?
tf.nn.max_pool(value, ksize, strides, padding, name=None)
参数是四个,和卷积很类似:
第一个参数value:需要池化的输入,一般池化层接在卷积层后面,所以输入通常是feature map,依然是[batch, height, width, channels]这样的shape
第二个参数ksize:池化窗口的大小,取一个四维向量,一般是[1, height, width, 1],因为我们不想在
batch和
channels
上做池化,所以这两个维度设为了1
第三个参数strides:和卷积类似,窗口在每一个维度上滑动的步长,一般也是[1, stride,
stride
, 1]
第四个参数padding:和卷积类似,可以取'VALID' 或者'SAME'
返回一个Tensor,类型不变,shape仍然是[batch, height, width, channels]
这种形式
tf入门-池化函数 tf.nn.max_pool 的介绍的更多相关文章
- CNN之池化层tf.nn.max_pool | tf.nn.avg_pool | tf.reduce_mean | padding的规则解释
摘要:池化层的主要目的是降维,通过滤波器映射区域内取最大值.平均值等操作. 均值池化:tf.nn.avg_pool(input,ksize,strides,padding) 最大池化:tf.nn.ma ...
- TF-池化函数 tf.nn.max_pool 的介绍
转载自此大神 http://blog.csdn.net/mao_xiao_feng/article/details/53453926 max pooling是CNN当中的最大值池化操作,其实用法和卷积 ...
- 第三节,TensorFlow 使用CNN实现手写数字识别(卷积函数tf.nn.convd介绍)
上一节,我们已经讲解了使用全连接网络实现手写数字识别,其正确率大概能达到98%,这一节我们使用卷积神经网络来实现手写数字识别, 其准确率可以超过99%,程序主要包括以下几块内容 [1]: 导入数据,即 ...
- 深度学习原理与框架-Tensorflow卷积神经网络-卷积神经网络mnist分类 1.tf.nn.conv2d(卷积操作) 2.tf.nn.max_pool(最大池化操作) 3.tf.nn.dropout(执行dropout操作) 4.tf.nn.softmax_cross_entropy_with_logits(交叉熵损失) 5.tf.truncated_normal(两个标准差内的正态分布)
1. tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME') # 对数据进行卷积操作 参数说明:x表示输入数据,w表示卷积核, stride ...
- tensorflow max_pool(最大池化)应用
1.最大池化 max pooling是CNN当中的最大值池化操作,其实用法和卷积很类似. tf.nn.max_pool(value, ksize, strides, padding, name=Non ...
- 第十四节,TensorFlow中的反卷积,反池化操作以及gradients的使用
反卷积是指,通过测量输出和已知输入重构未知输入的过程.在神经网络中,反卷积过程并不具备学习的能力,仅仅是用于可视化一个已经训练好的卷积神经网络,没有学习训练的过程.反卷积有着许多特别的应用,一般可以用 ...
- 【小白学PyTorch】21 Keras的API详解(下)池化、Normalization层
文章来自微信公众号:[机器学习炼丹术].作者WX:cyx645016617. 参考目录: 目录 1 池化层 1.1 最大池化层 1.2 平均池化层 1.3 全局最大池化层 1.4 全局平均池化层 2 ...
- MinkowskiPooling池化(上)
MinkowskiPooling池化(上) 如果内核大小等于跨步大小(例如kernel_size = [2,1],跨步= [2,1]),则引擎将更快地生成与池化函数相对应的输入输出映射. 如果使用U网 ...
- CNN学习笔记:池化层
CNN学习笔记:池化层 池化 池化(Pooling)是卷积神经网络中另一个重要的概念,它实际上是一种形式的降采样.有多种不同形式的非线性池化函数,而其中“最大池化(Max pooling)”是最为常见 ...
随机推荐
- VMware Workstation 虚拟机的服务启动项
- 4-在windon10上mysql安装与图形化管理
安装及可能遇到的问题: 1.windows10上安装mysql(详细步骤 https://blog.csdn.net/zhouzezhou/article/details/52446608 2. 在 ...
- Entity Framework 6.0 对枚举的支持/实体添加后会有主键反回
实验 直接上代码,看结果 实体类 [Flags] public enum FlagsEnum { Day = , Night = } public class EntityWithEnum { pub ...
- linux查看端口号监听状态
lsof -i:<port> netstat -tunlp | grep <port>
- CTF中的变量覆盖漏洞
https://www.cnblogs.com/bmjoker/p/9025351.html 原 作 者:bmjoker出 处:https://www.cnblogs.com/bmjoker/p/ ...
- Chrome Command Line API 参考
- UVa 1374 Power Calculus (IDA*或都打表)
题意:给定一个数n,让你求从1至少要做多少次乘除才可以从 x 得到 xn. 析:首先这个是幂级的,次数不会很多,所以可以考虑IDA*算法,这个算法并不难,难在找乐观函数h(x), 这个题乐观函数可以是 ...
- C# Http请求接口数据的两种方式Get and Post
面向接口编程是一种设计思想,无论用什么语言都少不了面向接口开发思想,在软件开发过程中,常常要调用接口,接下来就是介绍C#调用其它开发商提供的接口进行获取数据,http接口方式获取接口数据. Get请求 ...
- 用Swift实现一款天气预报APP(一)
这个系列的目录: 用Swift实现一款天气预报APP(一) 用Swift实现一款天气预报APP(二) 用Swift实现一款天气预报APP(三) Swift作为现在苹果极力推广的语言,发展的非常快.这个 ...
- HDU1102&&POJ2421 Constructing Roads 2017-04-12 19:09 44人阅读 评论(0) 收藏
Constructing Roads Time Limit : 2000/1000ms (Java/Other) Memory Limit : 65536/32768K (Java/Other) ...