人脸检测及识别python实现系列(6)——终篇:从实时视频流识别出“我”
人脸检测及识别python实现系列(6)——终篇:从实时视频流识别出“我”
终于到了最后一步,激动时刻就要来临了,先平复一下心情,把剩下的代码加上,首先是为Model类增加一个预测函数:
#识别人脸
def face_predict(self, image):
#依然是根据后端系统确定维度顺序
if K.image_dim_ordering() == 'th' and image.shape != (1, 3, IMAGE_SIZE, IMAGE_SIZE):
image = resize_image(image) #尺寸必须与训练集一致都应该是IMAGE_SIZE x IMAGE_SIZE
image = image.reshape((1, 3, IMAGE_SIZE, IMAGE_SIZE)) #与模型训练不同,这次只是针对1张图片进行预测
elif K.image_dim_ordering() == 'tf' and image.shape != (1, IMAGE_SIZE, IMAGE_SIZE, 3):
image = resize_image(image)
image = image.reshape((1, IMAGE_SIZE, IMAGE_SIZE, 3)) #浮点并归一化
image = image.astype('float32')
image /= 255 #给出输入属于各个类别的概率,我们是二值类别,则该函数会给出输入图像属于0和1的概率各为多少
result = self.model.predict_proba(image)
print('result:', result) #给出类别预测:0或者1
result = self.model.predict_classes(image) #返回类别预测结果
return result[0]
这个函数是提供给外部模块使用的,外部模块用它来预测哪个是“我”,哪个不是“我”。代码很简单,注释也很详细,就不多解释了。接下来我们新建一个python文件:face_predict_use_keras.py,然后为这个文件添加如下代码:
#-*- coding: utf-8 -*- import cv2
import sys
import gc
from face_train_use_keras import Model if __name__ == '__main__':
if len(sys.argv) != 2:
print("Usage:%s camera_id\r\n" % (sys.argv[0]))
sys.exit(0) #加载模型
model = Model()
model.load_model(file_path = './model/me.face.model.h5') #框住人脸的矩形边框颜色
color = (0, 255, 0) #捕获指定摄像头的实时视频流
cap = cv2.VideoCapture(int(sys.argv[1])) #人脸识别分类器本地存储路径
cascade_path = "/usr/local/share/OpenCV/haarcascades/haarcascade_frontalface_alt2.xml" #循环检测识别人脸
while True:
_, frame = cap.read() #读取一帧视频 #图像灰化,降低计算复杂度
frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) #使用人脸识别分类器,读入分类器
cascade = cv2.CascadeClassifier(cascade_path) #利用分类器识别出哪个区域为人脸
faceRects = cascade.detectMultiScale(frame_gray, scaleFactor = 1.2, minNeighbors = 3, minSize = (32, 32))
if len(faceRects) > 0:
for faceRect in faceRects:
x, y, w, h = faceRect #截取脸部图像提交给模型识别这是谁
image = frame[y - 10: y + h + 10, x - 10: x + w + 10]
faceID = model.face_predict(image) #如果是“我”
if faceID == 0:
cv2.rectangle(frame, (x - 10, y - 10), (x + w + 10, y + h + 10), color, thickness = 2) #文字提示是谁
cv2.putText(frame,'Dady',
(x + 30, y + 30), #坐标
cv2.FONT_HERSHEY_SIMPLEX, #字体
1, #字号
(255,0,255), #颜色
2) #字的线宽
else:
pass cv2.imshow("识别朕", frame) #等待10毫秒看是否有按键输入
k = cv2.waitKey(10)
#如果输入q则退出循环
if k & 0xFF == ord('q'):
break #释放摄像头并销毁所有窗口
cap.release()
cv2.destroyAllWindows()
这个就是我们的最终程序,它能够从USB拍摄的实时视频流中找出哪一个是我,先看识别结果:
执行结果符合预期,值得庆贺。至此,本系列完结。
人脸检测及识别python实现系列(6)——终篇:从实时视频流识别出“我”的更多相关文章
- 人脸检测及识别python实现系列(2)——识别出人脸
人脸检测及识别python实现系列(2)——识别出人脸 http://www.cnblogs.com/neo-T/p/6430583.html
- 人脸检测及识别python实现系列(5)——利用keras库训练人脸识别模型
人脸检测及识别python实现系列(5)——利用keras库训练人脸识别模型 经过前面稍显罗嗦的准备工作,现在,我们终于可以尝试训练我们自己的卷积神经网络模型了.CNN擅长图像处理,keras库的te ...
- 人脸检测及识别python实现系列(4)——卷积神经网络(CNN)入门
人脸检测及识别python实现系列(4)——卷积神经网络(CNN)入门 上篇博文我们准备好了2000张训练数据,接下来的几节我们将详细讲述如何利用这些数据训练我们的识别模型.前面说过,原博文给出的训练 ...
- 人脸检测及识别python实现系列(3)——为模型训练准备人脸数据
人脸检测及识别python实现系列(3)——为模型训练准备人脸数据 机器学习最本质的地方就是基于海量数据统计的学习,说白了,机器学习其实就是在模拟人类儿童的学习行为.举一个简单的例子,成年人并没有主动 ...
- 人脸检测及识别python实现系列(1)——配置、获取实时视频流
人脸检测及识别python实现系列(1)——配置.获取实时视频流 1. 前言 今天用多半天的时间把QQ空间里的几篇年前的旧文搬到了这里,算是完成了博客搬家.QQ空间里还剩下一些记录自己数学学习路线的学 ...
- OpenCV实践之路——人脸检测(C++/Python) 【转】
转自:http://blog.csdn.net/xingchenbingbuyu/article/details/51105159 版权声明:本文为博主原创文章,转载请联系作者取得授权. 本文由@星沉 ...
- selenium+python自动化测试系列---基础知识篇(1、HTML基础知识1)
1.什么是HTML HTML是一种描述网页的语言.HTML指超文本标记语言(Hyper Text Markup Language),它不是一种编程语言,而是一种标记语言(markup language ...
- 死磕 java线程系列之终篇
(手机横屏看源码更方便) 简介 线程系列我们基本就学完了,这一个系列我们基本都是围绕着线程池在讲,其实关于线程还有很多东西可以讲,后面有机会我们再补充进来.当然,如果你有什么好的想法,也可以公从号右下 ...
- Python 3 利用 Dlib 实现摄像头实时人脸检测和平铺显示
1. 引言 在某些场景下,我们不仅需要进行实时人脸检测追踪,还要进行再加工:这里进行摄像头实时人脸检测,并对于实时检测的人脸进行初步提取: 单个/多个人脸检测,并依次在摄像头窗口,实时平铺显示检测到的 ...
随机推荐
- .Net core 使用NPOI 直接导入Excel到数据库(即不先将Excel保存到服务器再读取文件到数据库)
/// <summary> /// 导入信息 /// </summary> /// <param name="file"></param& ...
- Beyond Compare 命令行生成目录下所有文件比对的Html网页report
MAC环境下,使用Beyond Compare命令行生成两个文件夹差异的html,按目录递归生成. #1. 创建compare #2. 创建compare/old #3. compare/new #4 ...
- Go语言之旅:包
每个 Go 程序都是由一些包组成的. 原文地址:https://golang-book.readthedocs.io 欢迎关注我们的公众号:小菜学编程 (coding-fan) 程序从 main 包开 ...
- 深入理解JVM与GC回收
JVM内存模型 java虚拟机在执行java程序的过程中会把它所管理的内存划分为不同的若干个不同的的数据区域,这些区域都有各自的用途,以及创建和销毁的时间,有的区域随着虚拟机的进程的启动而存在,有些区 ...
- sort_area_retained_size之tom解释
sort_area_retained_size 摘录一段asktom中tom的解释,对sort内存分配的方式进行了描述: it will allocate up to sort_area_retain ...
- 有关dubbo面试的那些事儿
dubbo是什么 dubbo是一个分布式框架,远程服务调用的分布式框架,其核心部分包含: 集群容错:提供基于接口方法的透明远程过程调用,包括多协议支持,以及软负载均衡,失败容错,地址路由,动态配置等集 ...
- 【Java项目】GUI图形用户界面(不断更新中!)
<目录> 1 创建一个简单的窗体 2 如何进行事件监听 (1) 按钮监听 (2) 键盘监听 (3) 鼠标监听 3 容器 (1) 创建一个简单的对话框 (2) 创建一个简单的模态对话框 (3 ...
- nginx+uwsgi+flask+supervisor 项目部署
环境 - Linux: Ubuntu 16.04 - uWSGI 2.0.18 - Flask 1.0.2 - supervisor 3.2.0 - nginx/1.8.1 首先区分几个概念 WSGI ...
- spring定时任务注解@Scheduled的记录
spring 定时任务@Scheduled 转自https://www.cnblogs.com/0201zcr/p/5995779.html 1.配置文件 <?xml version=" ...
- Ubuntu16.04上安装neo4j数据库
什么是neo4j数据库? neo4j数据库是图数据库的一种,属于nosql的一种,常见的nosql数据库还有redis.memcached.mongDB等,不同于传统的关系型数据库,nosql数据也有 ...